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About the Santa Fe Institute

The Santa Fe Institute SFI) is a niult idisciplinary graduate research and teach-
ing instittu tion formed to nurture research on complex systems and their simpler
elements. A private, independent institution. SF1 was founded in 1984. Its pri-
mary concern is to focus the tools of traditional scientific disciplines and emerging
new computer resources on the problems and opportunities that are involved in
the multidisciplinary study vof complex ssterns--those fundamental procesb--- that
shape almost every aspect of human life. lnuderstanding complex systems is critical
to realizing the full potential of science, and may be expected to yield enormous
intellectual and practical benelits.

All titles from the ,,'anta Fe Institute Studies
in the Sciences of Complexzty series will carry
this imprint which is based on a M*imbres
pottery design (circa A.D. 950 1150). drawn
by Betsy Jones.
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Preface

The 1991 Complex Systenms Summer School continued the traditions of its pre-
decessors-a wide array of topics was discussed, students were by turns excited
and exciting, and the editors of this volume of lectures were left with the task of
finding something different to say about an event that has become almost stable
by its fourth year. The alternative we have chosen is to be mercifully brief in this
preface to the chapters based on the fourth summer school. We can start, off by
safely reporting that none of our participants cracked the problem of providing a
completely satisfying definition of complexity, though not for want of trying.

As in the previous volumes, the contents of this book reflect the topics discussed
in the 1991 Summer School. However. some of the lecturers given there do not ap-
pear within; some of those will appear in next year's proceedings. For completeness,
we list here those lectures which are'not present within this volume: Chaos (Predrag
Cvitanovic), Statistical Mechanics of Neural Networks (Sara Solla), The Ecology
of Computation (Bernardo Iluberman), Neural Network Algorithms and Architec-
tures (John Denker), Neural Basis of Vision in Insects (Nicholas Strausfeld), and
Spin Glass Approaches to Protein Folding (Peter Wolynes).

Following an innovation begun last year, we are pleased to include a number
of contributions from the participants themselves. These are the result of research
by individuals or working groups set up during the school. The results are quite
impressive.

1991 Lectures in Complex Systems, SFI Studies in the Sciences of Complexity,
Lect. Vol. IV, Eds. L. Nadel & D. Stein, Addison-Wesley, 1992 XlII
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Gail A. Carpenter
Department of Cognitive and Neural Systems, Boston University, 111 Cummington Street.
Boston, MA 02215

Neural Network Models for Pattern
Recognition and Associative Memory

[his review outlines some fundamental neural network modules for :lpso-
ciative memory, pattern recognition, and category learning. Included are
discussions of the Mc'ulloch-Pitts neuron, perceptrons, adaline and mada-
line, back propagation. the learning matrix, linear associative memory, em-
bedding fields, instars and outstars. the avalanche, shunting competitive
networks. competitive learning, computational mapping by instar/outstar
families, adaptive resonance theory, the cognitron and neocognitron, and
simulated annealing. Adaptive filter formalism provides a unified notation.
Activation laws include additive and shunting equations. Learning laws in-
clude back-coupled error correction. Htebbian learning, and gated instar
and outstar equations. Also included are discussions of real-time and off-
line modeling, stable and unstable coding, supervised and unsupervised
learning, and self-organization.

1991 Lectures in Complex Systems, SFI Studies in the Sciences of Complexity,
Lect. Vol. IV, Eds. L. Nadel & D. Stein, Addison-Wesley, 1992 3



4 Gail A. Carpenter

1. INTRODUCTION
Neural network analysis exists on many different levels. At the highest level (Figure
1) we study theories, architectures, and hierarchies for big problems such as early
vision, speech. arm movement, reinforcement, and cognition. Each architecture is
typically constructed from pieces, or modulhs, designed to solve parts of a bigger
problem. Trhese pieces might be used. for example. to associate pairs of patterns
with one another or to sort. a class of patterns into various categories. In turn. for
every such module there is a btwildering variety of examples, equations. simulations.
theorems, and implementations, studied tinder various conditions such as fast or
slow input presentation rates, supervised or unsupervised learning, and real-time
or off-line dynamics. These variations and their applications are now the subject of
hundreds of talks and papers each year. In this review I will focus on the middle
level, on some of the fundamental neural network modules that carry out associative
memory, pattern recognition. and category learning.

Even then this is a big subject. To help organize it further, I will trace the
historical development of the main ideas, grouped by theme rather than by strict
chronological order. But keep in mind that there is a much more complex history,
and many more contributors, than you will read about here. I refer you to the
Bibliography, in particular to the collection of articles in Neurocomputing: Foun-
datzons of Research, edited by James A. Anderson and Edward Rosenfeld (MIT
Press, Cambridge. 1988).

2. THE McCULLOCH-PITTS NEURON
We would probably all agree to begin with the McCulloch-Pitts neuron (Figure
2(a)). The McCulloch-Pitts model describes a neuron whose activity x. is the sum
of inputs that arrive via weighted pathways. The input from a particular pathway is
an incoming signal Si multiplied by the weight wij of that pathway. These weighted
inputs are summed independently. TIhe outgoing signal Sj = f(xj) is typically a
nonlinear function--binary, sigmoid, threshold-linear--of the activity x. in that
cell. The McCulloch-Pitts neuron can also have a bias term O,, which is formally
equivalent to the negative of a threshold of the outgoing signal function.

3. ADAPTIVE FILTER FORMALISM
A very convenient notation for describing the McCulloch-Pitts neuron is the adap-
tive filter. It is this notation that I will here use to translate models into
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NEURAL NETWORKS

THEORIES EARLY VISION

SPEECH

ARCHITECTURES ARM MOVEMENT

REINFORCEMENT
HIERARCHIES COGNITION

ASSOCIATE PATTERNS
MODULES (a(), b(1)), ( ), b(2)

SORT PATTERNS

INTO CATEGORIES

EXAMPLES FAST / SLOW LEARNING

EQUATIONS UNSUPERVISED

SIMULATIONS REAL TIME / OFF LINE

THEOREMS ADAPTIVE / PREWIRED

IMPLEMENTATIONS VARIOUS LEARNING LAWS

- VLSI, OPTICAL

FIGURE 1 Levels of neural network analysis.

a common language so that we can compare and contrast them. The elementary
adaptive filter depicted in Figure 2(b) has:

1. a level F, that registers an input pattern vector;

2. signals Si that pass through weighted pathways; and
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3. a second level F, whose activity pattern is here computed by the McCulloch-

Pitts function:
xj St= ,,+t . (1)

(a) McCULLOCH-PITTS NEURON
f(x )

Si~f~i) 1BINARY

-• =ZSw + e.

f ×

THRESHOLD - LINEAR

(b) ADAPTIVE FILTER

e j•. sI = f(x j)

F x
20

0Si Sf(xi)

F2

FIGURE 2 The
McCulloch-Pitts model (a)

S Sw - as a neuron, with typical
nonlinear signal functions;

I SI WIo COS( S, i INPUT (b) as an adaptive filter.
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The reason this formalism has proved so extraordinarily useful is that the F.
level of the adaptive filter romputes a pattern match, as in Eq. (2):

E Sid),, S iiStIIwiLcos S,wj). (2)

The independent sum of the weighted pathways in Eq. (2) equals the dot product of
the signal vector S times the weight vector wj. This term can be factored into the
"energy," the product of the lengths of S and wj, times a dimensionless measure
of "pattern match." the cosine of the angle between the two vectors. Suppose that
the weight vectors wj are normalized and the bias terms 9, are all equal. Then the
activity vector x across the second level describes the degree of match between the
signal vector S and the various weighted pathway vectors wj: the F2 node with the
greatest activity indicates the weight vector that forms the best match.

4. LOGICAL CALCULUS AND INVARIANT PATTERNS
The paper that first describes the McCulloch-Pitts model is entitled "A Logical Cal-
culus of the Ideas Immanent in Nervous Activity.""3 In that paper, McCulloch and
Pitts analyze the adaptive filter without adaptation. In their models, the weights
are constant. There is no learning. This i943 paper shows that given the linear
filter with an absolute inhibition term:

xj= Siwi, + Oj - [inhibition] (3)

and binary output signals, these networks can be configured to perform arbitrary
logical functions. And if you are looking for applications of neural network research,
you need only read the memoirs of John von Neumann 47 to see how heavily the
McCulloch-Pitts formalism influenced the development of present-day computer
architectures.

In a sense, however, McCulloch and Pitts were looking backwards, to the early
20th century mathematics of Principia Mathematica.43 A glance at the 1943 paper
shows that it is written in notation with which few of us are now familiar. (This is a
good example of revolutionary ideas being expressed in the language of a previous
era. As the revolution comes about a new language evolves, making the seminal
papers "hard to read.") McCulloch and Pitts also clearly looked forward toward
present-day neural network research. For example, a later paper lb euitled "'How
We Know Universals: The Perception of Auditory and Visual Forms.""3 There
they examine ideas in pattern recognition and. the computation of invariants. They
thus took their research program into a domain distinctly different from the earlier
analysis of formal network groupings and computation. Still, they considered only
models without learning.
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5. PERCEPTRONS AND BACK-COUPLED ERROR
CORRECTION
The McCulloch-Pitts papers were extraordinarily influential, and it was not long
before the next generation of researchers added learning and adaptation. One great
figure of the next decade was Frank Rosenblatt, whose name is tied with the percep-
tron niodel.a9 Actually, "'perceptron" refers to a large class of neural models. The
models that Rosenblatt himself developed and studied are numerous and varied:
see, for example, his book. Principles of Neurodynamzcs. 40

The core idea of the perceptron is the incorporation of learning into the McCul-
loch-Pitts neuron model. Figure 3 illustrates the main elements of the perceptron,
including, in Rosenblatt's terminology, the sensory unit (S); the association unit
(A), where the learning takes place: and the response unit (R).

One of the many perceptrons that Rosenblatt studied. one that remains im-
portant to the present day, is the back-coupled perceptron.40 Figure 4(a) illustrates
a simple version of the back-coupled perceptron model, with a feedforward adaptive

McCULLOCH-PITTS + LEARNING

f (xj)1

RESPONSE =f (X X.
UNIT (R) j j

=Xj a~w +0.

ASSOCIATION iUNIT (A) ___wi j F2

,a. dw,,
dt

SENSORY

UNIT (S) aF

FIGURE 3 Principal elements of a Rosenblatt perceptron: sensory unit (S), association
unit (A), and response unit (R).



Neural Network Models for Pattern Recognition and Associative Memory 9

filter and binary output signal. Weights wij are adapted according to whether the
actual output Si matches a target output b1 imposed on the system. The actual
output vector is subtracted from the target output vector: their difference is defined
as the error: and that difference is then fed back to adjust the weights, according to
some probabilistic law. Rosenblatt called this process back-coupled error correction.
It was well known at the time that these two-level perceptrons could sort linearly
separable inputs, which can be separated by a hyperplane in vector space. into two
classes. Figure .1(b) shows back-coupled error correction in more detail. In particular
the error 6j is fed back to every one of the weights converging on the jth node.

6. ADALINE AND MADALINE
Research in the 1960s did not stop with these two-level perceptrons, but contin-
ued on to multiple-level perceptrons, as indicated below. But first let us consider
another development that took place shortly after Rosenblatt's perceptron formu-
lations. This is the set of models used by Bernard Widrow and his colleagues.
especially the adallne and madaline perceptrons. The adaline model has just one
neuron in the F, level in Fr'gure 5; the madaline, or many-adaline, model has any
number of neurons in that level. Figure 5 highlights the principal difference be-
tween the adaline/madaline and Rosenblatt's two-level feedforward perceptron: an
adaline/madaline model compares the analog output xj with the target output bj.
This comparison provides a more subtle index of error than a law that compares
the binary output with the target output. The error bj - xj = bj is fed hack to
adjust weights using a Rosenblatt back-coupled error correction rule:

d wij = ,,j a , (4)

at - (4)

This rule minimizes the mean squared error:

Z62 (5)

averaged over all inputs.5 0 It is therefore known as the least mean squared error
correction rule, or LMS.
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(a) BACK - COUPLED PERCEPTRON

TARGET OUTPUT ACTUAL OUTPUT
(BINARY)

b.

C -S C
ERROR CORRECTION
65. b -S i ivwll

BACK - COUPLED
ERROR CORRECTION

SYSTEM (PROBABILISTIC)

dw a, INPUT

dt

(b) BACK - COUPLED ERROR CORRECTION

xI

W, FIGURE 4 Back-coupled
error correction. (a) The
difference between the
target output and the
actual output is fed back
to adjust weights when
an error occurs. (b) All
weights w2i fanning in to
the jth node are adjusted

F1  in proportion to the error dj
at that node.
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ADALINE MADALINE
(1 NEURON) (MANY NEURONS)

A

TARGET OUTPUT ACTUAL OUTPUT
BINARY

b. * S1=f(x1 )

bl

ERO -x-=L-a.

I I i
b."j=b - W

1 :F

• • ai
LEAST MEAN SQUARED (LMS)

ERROR CORRECTION

MINIMIZES 1I
dw. I Ia iNPUT

dt _ _ _ _ _

FIGURE 5 The adaline and madaline perceptrons use the analog output .-,, rather
than the binary output ,•4, in the back-coupled error correction procedure.

Once again. adaline and niadaline provide uiany ,xaiiplehs of he, technoloic'lt
spin-of S already generated hy neural netw ork research Mo me (,f thie', are si m ma-

rized in an article b% Widrow and Winier"51 in a (Cotnpi;t 'r special issue on art itic ai
neural systerns. I'here lhie aiuthors describe adaptive r',lualizers and ,tdpilit , 1,C11.,
cancellation in anten.n•al . anid other engineering :application.,. all ,lireiIl
traceable to early neural network designs.
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7. MULTI-LEVEL PERCEPTRONS: EARLY BACK
PROPAGATION
We have so far been discussing only two-lhvel perceptrons. lHosenllaitt not cl-
tent, with these, also st udied inutiti-level perceptrons. Ls desc'ribed [ in I'rin up1s .' f

. Lcurodynainics. One particularly interest iig. section iii that bo)()k i.-,cI it h d '3ack-

Propagating Error ( 'orrection Procedures."he I, ack-j)ropagtatilln I,'lhi describt,
in that section anticipates the currently used I)ack-I)ropagat ion iioriel. which I,

also a multi-level prceptroti. In ('hapter 13. Rosenblatt lefiines a I ;ac'k-lPropa.t.,atlo
algorithm that ha.,, like most of his algorithnis. a probabilistic learning law: hoi
proves a theoreni about this system; and hit, carries out sinulations. Ilis chapter.
"Summary of Three-Layer Series-('oupled Systerns: (Capabilities and Deficiencies."
is equally revealing. [his chapter Inchudes a hard look at. what is lacking ,as well a,,
what, is good inl Rosenblatt's back-lpropagation algorit hilt. antd i puts t he lie to I lite
myth that all of these systenrs were looked at only through rose-colored glasses.

8. LATER BACK PROPAGATION
Let, us now tnove on to what has become one of the miost useful and well-studied
neural network algorithms, the model we now call back propagation. This systeni
was first developed by Paul Werbos,'1 as part of his Ph.D thesis "Beyond Re-
gression: New 'Fools for Prediction and Analysis in the Behavioral Sciences".: and
independently discovered by David Parker. 3' (See \Verbost') for ;a review of the
history of the development of back propagation.)

The most popular back-propagation examples carry out associative learning:
during training, a vector pattern a is associated with a vector pattern b: and sub-
sequently b is recalled upon presentation of a."' The back-propagation system is
trained under conditions of slow learning, with each pattern pair (a.b) presented
repeatedly during training. The basic elements of a typical back-propagation sys-
tem are the McCulloch-Pitts linear Alter with a sigmoid output signal function
and Rosenblatt back-coupled error correction. Figure 6 shows a block diagraml of
a back-propagation system that is a three-level perceptron. The input signal %e,(--
tor converges on the "hidden unit" F2 level after passing through the first set of
weighted pathways wi,. Signals ,j then fan out to the F3 level, which generates
the actual output of this feedforward system. A back-coupled error correct ion .vs-
tem then compares the actual output Sk with a target output bA. and feeds back
their difference to all the weights wijk converging on the kth node. In this pro-
cess the difference bk - Sk is also multiplied by another term, f'(xk). conlptlte~d
in a "differentiator" step. One function of this step is to ensure that the weights
remain in a bounded range: the shape of the sigmoid signal function itplies that
weights wjk will stop growing if the magnitude of the activity Xk becomes too large.
since then the derivative term f'(xk) goes to zero. Then there is a second way In
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which the error correction is fed back to the lower level. This is where the terin
"back propagation- enters: the weights U'jk in the feedforward pathways from [./-

to F• are now used in a second place. to tilter error information. rhis process is
called weight transport. In particular. all Ilie weights ?1',k in pathways fanning oit
from the jth f,' node areI transported for multiplication by the corresponding error

TARGET OUTPUT ACTUAL OUTPUT

b kO S k

DIFFERENTIATOR

bk f L sigmoid
"•~Sk:f( xk)

ERROR / k = . k + 0k

kf (xk)(bk- S3
5k /7•// Si

WEIGHT 
S fx sigmoid

TRANSPORT Jk DIFFERENTIATOR

ERROR x J HIDDEN UNITS
1 )Xj = 2" Si wij + 0.

L jk L. 2

S.

CORRECTION / LMSINPUTLEARNING RULE aI INU F,

FIGURE 6 Block diagram of a back-propagation algorithm for associative memory.
Weights in the three-level feedforward perceptron are adjusted according to back-
coupled error correction rules. Weight transport propagates error information in F_-to-F-3
pathways back to weights in F1 -to--/a pathways.
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terms 4: and the suni of all these products, times the bounding derivative terni
f'( Ik, is back-coupled to adjust all t he weights uti in pathways fanning in to the
jt h 1'-' node.

9. HEBBIAN LEARNING
I'his brings us close to the present in t his part icular Ifine of perceptron research. I

am now goini4 to step back and trace another major neural network Iherne t hat goes
inder the name 1t bbian learning. One sentence in a 1949 book. The Organization

of Bchaliaoro by Donald lHebb, is responsible for the phrase ilebbian learning:

"XWhen an axon of ceil A ,is near enoouig to excite a cell B and repeatedly
or persistently takes place in tiring it. soie growth process or metabolic

change takes place in one or both cells such that A's efficiency. as one of
the cells firing B. is increased.- 21

HEBBIAN LEARNING

B O x PRESYNAPTIC

F2 TWi CORRELATION

dw..

dst CU 11X

F, A X

FIGURE 7 Donald Hebb 24 provided a qualitative description of increases in path
strength that occur when cell A helps to fire cell B. In the adaptive filter formalism,
this hypothesis is often interprted as a weight change that occurs when a presynaptic
signal Si is correlated with a postsynaptic activity rj.
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Actually, 'Hlebbian learning" was not a new idea in 1949: it can be traced back
to Pavlov and earlier. But in the decade of McCulloch and Pitts. the formulation
of the idea in the above s¢enitence crystallized the notion in such a way that it
became widely influential in the emerging neural network field. Translated into a
differential equation (Figure 7). the llebbian rule computes a correlation between
the presynaptic signal S, an( the postsynaptic activity xj. with positive values of
the correlation term .', x, led h (ing to increases in the weight i,j.

The Hebbian learning thelie has since evolved in a number of directions. One
important development e'ntailed simply adding a passive decay term to the Ilebbian
correlation termli:

d w:,j_ . ' - (6)

dt

Other developments are described below. In all these rules, changes in the weight
Wi( depend upon a simple function of the presynaptic signal ?'j. the postsynaptic
activity xj, and the weight itself. as in Eq. (6). In contrast, back-coupled error
correction requires a term that niust be computed away from the target node and
then transmitted back to adjust the weight.

10. THE LEARNING MATRIX
Many of the models that followed the perceptron in the 1950s and 1960s can be
phrased in Hebbian lphis Mc( 'illlochl-Pitts) language. One of the earliest and most
important is the learning inatrix (Figure 8) developed by K. Steinbuch.i ` The
function of the learning matrix is to sort, or partition, a set of vector patterns
into categories. In the simple learning matrix illustrated in Figure 8(a), an input
pattern a is represented in the vertical wires. During learning a category for a is
represented in the horizontal wires of the crossbar: a is placed in category .1 when
the Jth component of the output vector b is set equal to 1. During such an input
presentation, the weight wij is adjusted upward by a fixed amount if ai 1 and
downward by the same amount if ai -. 0. Then during performance the weights a,,,
are held constant: and an input a is deeineu to be in category J if the weight vector
WJ = (WIJ.... WNyJ) is closer than any other weight. vector to a, according to some
measure of distance.

Recasting the crossbar learning matrix in the adaptive filter format, (Figure
8(b)) helps us to see that this simple model is the precursor of a fundamental
module widely used in present-day neural network modeling, namely compellz11c
learning. In particular, activity at the top level of the learning matrix corresponds
to a category representation. Setting activity xj equal to 1, while all other rj's
are set equal to 0. corresponds to the dynamics of a choice, or winner-lake-all.
neural network. Steinbuch's learning rule can also be translated into the tHebbian
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(a) INPUT VECTOR a

CATEGORY -I

VECTOR b --

(0..010.0) _ I w '

LEARNING . r.

b C0 1 J ) Aw W 0

(b) -b.

CATEGORY X CHOMEITIE
i d C. COMPETITIVEF LEARNING

2

S,

I .r

INP~r

F x1

dw
LEARNING d s

FIGURE 8 The learning

PERFORMANCE dw =matrix, for category learning.

(a) Cross-bar architecture for
dI electronic implementation.

S=,(b) The learning matrix
in adaptive filter notation.

CHOICE x I 1 jS f w s w, The learning matrix was a

I max is w precursor of the competitive

0 on' • learning paradigm.
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formalism, with weight adjustment during learning a joint function of a presynaptic
signal Si = (2ai - 1) and a postsynaptic signal xj = bj. (This rule is not strictly
Hebbian since weights can decrease as well as increase.) Then during performance.
weight changes are prevented: a new signal function Si = ai is chosen; and an F2
choice rule is imposed based, for example, on the (dot product measure illustrated
in Figure 9(b).

A model comparative analysis of the learning matrix and the madaline models
and their electronic implementations can be found in a paper by K. Steinbuch and
B. Widrow.45 This paper, entitled "A critical comparison of two kinds of adaptive
classification networks," carries out a side-by-side analysis of the learning matrix
and the madaline, tracing the two models' capabilities. similarities, and differences.

11. LINEAR ASSOCIATIVE MEMORY (LAM)
We will now move to a different line of research, namely the linear associative mem-
ory (LAM) models. Pioneering work on these models was done by J. Anderson,5

T. Kohonen,3 0 and K. Nakano. 36 Subsequently, many other linear associative mem-
ory models were developed and analyzed, for example by Kohonen and his collabo-
rators, who studied LAM's with iteratively computed weights that converge to the
Moore-Penrose pseudoinverse. 3" This latter system is optimal with respect to the
LMS error (5), and so is known as the optimal linear associative memory (OLAM)
model. Variations included networks with partial connectivity, probabilistic learning
laws, and nonlinear perturbations.

At the heart of all these variations is a very simple idea, namely that a set of
pattern pairs (a(P), b(P)) can be stored as a correlation weight matrix:

"= E . (7)
p (all patterns)

The LAM's have been an enduringly useful class of models because, in addition
to their great simplicity, they embody a sort of perfection. Namely, perfect recall
is achieved, provided the input vectors a(P) are mutually orthogonal. In this case,
during performance, presentation of the pattern a(P) yields an output vector x
proportional to b(P), as follows:

X =E a(p) . w j -- wa ij (" ') ( (q)b,

i q (8)
-- Sa i ai *b• .= - Z~a(P)a(q))b~q).

q i q

If, then, the vectors a(P) are mutually orthogonal, the last sum in Eq. (8) reduces
to a single term, with

Xi = IIa(P)I12b P)) (9)
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Thus the output vector x is directly proportional to the desired output vector. WP).
Finally, if we once again cast the LAM in the adaptive filter framework, we see that
it is a Hebbian learning model (Figure 9).

b.

OUTPUT exi
F2  __ __ Wi 1

a.

INPUT j_

a.

LEARNING dw..
(HEBBIAN) t = a x. = a.b.

dt

Each pair ( a , b (p) presented for 1 time unit:

w.. = a (P) b (P)
I j p I

PERFORMANCE x. = a.w..
J i I IJ

dw..
II-0

dt

FIGURE 9 A linear associative memory network, in adaptive filter/Hebbian learning
format.
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12. REAL-TIME MODELS AND EMBEDDING FIELDS
Most of the models we have so far discussed require external control of system dy-
namics. In the back- propagation model shown in Figure 6. for example, the initial
feedforward activation of the three-level perceptron is followed by error correction
steps that require either weight transport or reversing the direction of flow of acti-
vation. In the linear associative memory model in Figure 9. dynamics are altered as
the system moves from its learning mode to its performance mode. During learning,
activity xj at the output, level F, is set equal to the desired output bj. while tile in-
put 4;iuizwij coming to that. level from I', through the adaptive filter is suppressed.
During performance. in contrast, the dynamics are reversed: weight changes are
suppressed and the adaptive filter input determines Xj.

The phrase real tzme describes neural network models that require no exter-
nal control of system dynamics. ( Ical timc is alt.ernatively used to describe an%
system that is able to process inputs as fast as they arrive.) Differential equations
constitute the language of real-time models. A real-time model may or may not
have an external teaching input, like the vector b of the LAM model: and learn-
ing may or may not be shut down after a finite time interval. A typical real-time
model is illustrated in Figure 10. There, excitatory and inhibitory inputs could be
either internal or external Tb the model, but, if present. the influence of a signal is
not selectively ignored. Moreover. the learning rate c(t) might, say, be constant or
decay to 0 through time, but does not require algorithmic control. The dynamics of
performance are described by the same set of equations as the dynamics of learning.

Real-time modeling has characterized the work of Stephen Grossberg over the
past thirty years, work that in its early stages was called a theory of ernbcdding
fields."2 These early real-time models, as well as the more recent systems developed
by Grossberg and his colleagues at the Boston University Center for Adaptive
Systems, portray the inextricable linking of fast nodal activation and slow weight
adaptation. There is no externally imposed distinction between a learning mode
and a performance mode.

13. INSTARS AND OUTSTARS
Two key components of embedding field systems are the instar 17' 20 '46 and the
outstar.' Figure 11 illustrates the fan-in geometry of the instar and the fan-out
geometry of the outstar.

Instars often appear in systems designed to carry out adaptive coding, or
content-addressable memory (CAM). 3 ' For example, suppose that the incoming
weight vector (wli,... ,wN.j) approaches the incoming signal vector (S,,... SN)
while an input vector a is present at F,; and that the weight and signal vectors
are normalized. Then Eq. (2) implies that the filtered input Z, Siwij to the Jth
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ACTIVATION EQUATION (ADDITIVE MODEL)

dx. = + ~ excitatory ] -[inhibitory ]
dt inputs inputs

LEARNING EQUATION

dw..dtLL= E(t) F( S.,, x.,w..j)

dt '- Sw

X XI

FIGURE 10 Elements of a typical real-time model, with additive activation equations.

F2 node approaches its maximum value during learning. Subsequent presentation
of the same Fz input pattern a maximally activates the Jth F2 node; that is, the
"content addresses the memory," all other things being equal.

The outstar, which is dual to the instar, carries out spatial pattern learning.
For example, suppose that the outgoing weight vector (wJ I, .. , WJN) approaches
the F1 spatial activity pattern (Z 1, ... , ZN) while an input vector a is present. Then
subsequent activation of the Jth F2 node transmits to F1 the signal pattern (Sjwj 1 ,
... , SJWiN) = S,(wJI, ... , WJN), which is directly proportional to the prior F1
spatial activity pattern (zI,... XN), even though the input vector is now absent;
that is, the "memory addresses the content."

The upper instar and outstar in Figure 11 are examples of heteroassoclative
memories, where the field F1 of nodes indexed by i is disjoint from the field F2
of nodes indexed by j. In general, these fields can overlap. The important special
case in which the two fields coincide is called autoassociative memory, also shown
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in Figure 11. Powerful computational properties arise when neural network archi-
tectures are constructed from a combination of instars and outstars. We will later
see some of these designs.

INSTAR (FAN - IN) OUTSTAR (FAN - OUT)

ADAPTIVE CODING SPATIAL PATTERN LEARNING

CONTENT - ADDRESSABLE

MEMORY (CAM)

F I I

Si S j

001010i

a, ai

Sj SSI

si S.

xi x.

INDEX SETS
HETEROASSOCIATIVE: I n J = 0

1 n AUTOASSOCIATIVE: I = J
6 (INSTAR a OUTSTAR)

FIGURE 11 Heteroassociative and autoassociative instars and outstars, for adaptive
coding and spatial pattern learning.
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14. ADDITIVE AND SHUNTING ACTIVATION EQUATIONS
The outstar and the instar have been studied in great detail and with various
combinations of activation, or short-term memory, equations and learning, or long-
term memory, equations. O(ne activation equation, the addztUe model, is illustrated
in Figure 10. There. activity at a node is proportional to the difference between the
net excitatory input and the net. inhibitory input. Most of the models discussed so
far employ a version of the additive act ivat ion model. For example. the McCulloch-
Pitts activation equation (3) is the steady state of the additive equation ( 10):

lit = , + ±,, i ] - [inhibition+. (10)

Grossberg2 3 reviews a number of neural models that are versions of the additive
equation.

An important generalization of the additive model is the shunting model. In a
shunting network, excitatory inputs drive activity toward a finite maximum. while
inhibitory inputs drive activity toward a finite niiniinum, as in Eq. (11):

dxt - £+(A-x?) I: rexcitatory inputs] (B+ xi2 ) {inhibtr in ut] (i

In Eq. (11), activity xi remains in the bounded range (-B, A), and decays to the
resting level 0 in the absence of all inputs. In addition, shunting equations display
other crucial properties such as normalization and automatic gain control. Finally,
shunting network equations mirror the underlying physiology of single nerve cell
dynamics, as summarized by the Hodgkin-Huxley 27 equations:

dIVV- = _-V + (V•y, - V)TjVamn3 h - ( VK + V')gJKf. (12)
dit

In this single nerve cell model, durinZ depolarization, sodium ions entering across
the membrane drive the potential V toward the sodium equilibrium potential V.'?';
during repolarization, exiting potassium ions drive the potential toward the potas-
sium equilibrium potential -'VK; and in the balance the cell is restored to its resting
potential, which is here set equal to 0. In 1963 A. L. Hodgkin and A. F. Huxley
won the Nobel Prize for their development of this classic neural model.
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15. LEARNING EQUATIONS
A wide variety of learning laws for instars and outstars have also been studied. One
example is the Hebbian correlation + passive decay equation (6). T[here, the weight
wi computes a long-term weighted average of the product of presynaptic activity
Si and postsynaptic activity xj.

A typical learning law for instar coding is given by Eq. (13):

dwu, _ c(t)[Si -- wij]Xj. (13)

dt

Suppose, for example, that the .Jth F2 node is to represent a given category. Ac-
cording to Eq. (13), the weight vector (wiJ, WNJ) converges to the signal vector
(SI,. SN) when the Jth node is active: but that weight vector remains uiiih1aged
when a different category representation is active. The term xj thus buffers, or
gates, the weights wij against undesired changes, including memory loss due to
passive decay. On the other hand, a typical learning law for outstar pattern learn-
ing is given by Eq. (14):

dw 3 _ C(t)[Xi - WjJSj. (14)
_- dt

In Eq. (14), when the Jth F2 node is active the weight vector (wjl,..., wJN) con-
verges to the F, activity pattern vector (xi,.... xN). Again, a gating term buffers
weights against inappropriate changes. Note that the pair of learning laws described
by Eqs. (13) and (14) arc non-Hebbian. and are also non-symmetric. That is, Wij
is generally not equal to wji, unless the F, and F2 signal vectors S are identical to
the corresponding activity vectors x.

A series of theorems encompassing neural network pattern learning by systems
employing a large class of these and other activation and learning laws was proved
by Grossberg in the late 1960s and early 1970s. One set of results falls under the
heading outstar learning theorems. One of the most general of these theorems is
contained in an article entitled "Pattern Learning by Functional-Differential Neu-
ral Networks with Arbitrary Path Weights." 16 This is reprinted in Studies of Mind
and Brain,22 which also contains articles that introduce and analyse additive and
shunting !quations (10) and (11); learning with passive and gated memory decay
laws (6), (13), and (14); outstar and instar modules; and neural network architec-
tures constructed from these elements.
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GO

x t

/ai(t)

FIGURE 12 The avalanche: a neural network capable of learning and performing an
arbitrary space-time pattern.

16. LEARNING SPACE-TIME PATTERNS: THE AVALANCHE
While most of the neural network models discussed in this article are designed
to learn spatial patterns, problems such as speech recognition and motor learning
require an understanding of space-time patterns as well. An early neural network
model, called the avalanche, is capable of learning and performinrg an arbitrary
space-time pattern."4 In essence, an avalanche is a series of outstars (Figure 12).
During learning, the outstar active at time t learns the spatial pattern x(t) gener-
ated by the input pattern vector a(t). It is useful to think of x(t) as the pattern
determining finger positions for a piano piece: the same field of cells is used over
and over, and the sequence ABC is not the same as CBA. Following learning, when
no input patterns are present, activation of the sequence of outstars reads-out, or
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"performs," the space-time pattern it had previously learned. In its minimal form.
this network can be realized as a single cell with many branches. Learning and per-
formance can also be supervised by a nonspecific GO signal. The GO signal may
terminate an action sequence at any time and otherwise modulate the performance
energy and velocity. In general, the order of activation of the outstars, as well as
the spatial patterns themselves, need to be learned. This can be accomplished us-
ing autoassociative networks, as in the theory of serial learning1 5 or adaptive signal
processing

25

17. ADAPTIVE CODING AND CATEGORY FORMATION
Let us now return to the theme of adaptive coding and category formation, intro-
duced earlier in our discussion of Steinbuch's learning matrix. As shown in Figure
8(b), the learning matrix can be recast in the adaptive filter formalism, with the
dynamics of the F 2 level defined in such a way that only one node is active at a
given time. The active node, or category representation, is selected by a "'teacher"
during learning. During performance the active node is selected according to which
weight vector forms the best match with the input vector. Now compare the learn-
ing matrix in Figure 8(b) with the instar in Figure 11. The pictures. or network
"anatomies," seem to indicate that the instar is identical to the learning matrix.
The difference between the two models lies in the dynamics, or network "physi-
ology." The fundamental characteristic ,,f the inst ,r th-v iztinguishes it from the
learning matrix and other early models is the constraint that instar dynamics occur
in real time. In particular, the instar filtered input S . wj influences xj at all times,
and is not artificially suppressed during learning. However, the desire to construct
a category learning system that can operate in real time immediately leads to many
questions. The most pressing one is: how can the categories be represented if the
dynamics are not imposed by an external agent? For the choice case, for example,
the internal system dynamics need to allow at most one F, node be active, even
though other nodes may continue te receive large inputs, either internally, via the
filter, or externally, via the vector b. Even when the category representation is
a distributed pattern, this representation is generally a compressed, or contrast-
enhanced, version of the highly distributed net pattern coming in to F2 from all
sources. This compression is, in fact, the step that carries out the process wherein
some or many items are grouped into a new unit, or category.
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dt x + (A--xj) [Ij + f (x)]- xj f(x )Sdt j f(X

FIGURE 13 An on-center/off-surround shunting competitive network. Qualitative
features of the signal function f'(xj ) determine the way in which the network transforms
the input vector I into the state vector x.

18. SHUNTING COMPETITIVE NETWORKS
Fortunately, there is a well-defined class of neural networks ideally suited to play the
role of the category representation field. This is the class of on-center/off-surround
shunting competitive networks. Figure 13 illustrates one such system. There, the
input vector I can be the sum of inputs from one or more sources and is, in general,
highly distributed. On-center here refers to the feedback process whereby a cell
sends net excitatory signals to itself and to its immediate neighbors; off-surround
refers to the complementary process whereby the same cell sends net inhibitory sig-
nals to its more distant neighbors. In a 1973 article entitled "Contour Enhancement,
Short-Term Memory, and Constancies in Reverberating Neural Networks," Gross-
berg carried out a mathematical characterization of the dynamics of various classes
of shunting competitive networks. In particular he classified the systems accord-
ing to the shape of the signal function f(z,). Depending upon whether this signal
function is linear, faster-than-linear, slower-than-linear, or sigmoid, the networks
are shown to quench or enhance low-amplitude noise, and to contrast-enhance or
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flatten the input pattern I in varying degrees. In particular. a faster-than-linear
signal function implements the choice network needed for many models of cate-
gory learning. A sigmoid signal function, on the other hand. suppresses noise and
contrast-enhances the input pattern, without necessarily going to the extreme of
concentrating all activity in one n1ode. Thus an on-center/off-surrotnd shunting
competitive network wilh a signmoid signal function is shown to be an ideal design
for a category learning syst en1 with distributed code representations. This paramwet-
ric analysis thus provided the foundation for constructing larger network architec-
tures that, use a compeiit ive network as a component with well-defined functional
properties.

19. COMPETITIVE LEARNING
A module of fundamental importance in recent neural network architectures is de-
scribed by the phrase competitive hcarning. This module brings the properties of
the into the real-time setting. The basic competitive learning architecture consists
of an instar filter, from a field I' to a field F2 , and a competitive neural network at
F2 (Figure 14). The comiletitive learning module can operate with or without an
external teaching signal b. and learned changes in the adaptive filter can proceed
indefinitely or cease after a finite time interval. If there is no teaching signal at, a
given time. then the net input vector to F2 is the sum of signals arriving via the
adaptive filter. Then, if the category representation network is designed to make a
choice, the node that automatically becomes active is the one whose weight vector
best matches the signal vector, as in Eq. (2). If there is a teaching signal, the cat-
egory representation decision still depends on past learning, but this is balanced
against the external signal b, which may or may not overrule the past in the con-
petition. In either case, an instar learning law such as Eq. (13) allows a chosen
category to encode aspects of the new F1 pattern in its learned representation.

20. COMPUTATIONAL MAPS
Investigators who have developed and analyzed the competitive learning paradigm
over the years include K. Steinbuch44 ; S. Grossbergl'7 19120 : C. von der Malsburg' 6 :
S.-I. Amari3 ; S.-I. Amari and A. Takeuchi4 ; E. Bienenstock, L. Cooper, and P.
Munro 6; D. Rumelhart and D. Zipser4 2 ; and many others. Moreover, these and
other investigators proceeded to embed the competitive learning module in higher-
order neural network systems. In particular, systems were designed to learn com-
putational maps, producing an output vector b in response to an input vector a.
The core of many of these computational map models is an instar-outstar system.
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INSTAR + CONTRAST ENHANCEMENT

F2

Si

F1

ai

FIGURE 14 The basic competitive learning module combines the instar pattern coding
system with a competitive network that contrast-enhances its filtered input.

Recognition of this common theme highlights the models' differences as well as their
similarities. An early self-organizing three-level instar-outstar computational map
model was described by Grossberg,' 7 who later replaced the instar portion of this
model with a competitive learning module.20 The self-organizing feature map32 and
the counter-propagation network26 are also examples of instar-outstar competitive
learning models.

The basic instar-outstar computational map system is depicted in Figure 15.
The first two levels, F1 and F2 , form a competitive learning system. Included are the
fan-in adaptive filter, contrast enhancement at the "hidden" level F2 , and a learn-
ing law for instar coding of the input patternsea. The top two levels then employ
a fan-out adaptive filter for outstar pattern learning of the vector b. This three-level
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FIGURE 15 A three-level, feedforward instar-outstar module for computational
mapping. The competitive learning module (F 1 and F2 ) is joined with an outstar-type
fan-out, for spatial pattern learning.

architecture allows, for example, two very different input patterns to map to the
same output pattern: each input pattern can @ctivate its own compressed represen-
tation at F2 , while each of these F2 representations can learn a common output
vector. In the extreme case where each input vector a activates its own F2 node
the system learns any desired output. The generality of this extreme case, which
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implements an arbitrary mapping from R m to R", is offset by its lack of general-
ization, or continuity, as well as by the fact that each learned pair (a,b) requires
its own F2 node. Distributed F, representations provide greater generalization and
efficiency, at a cost in complete a priori generality of the mapping.

21. INSTABILITY OF COMPUTATIONAL MAPS
The widespread use of instar-outstar families of computational maps attests to the
power of this basic neural network architecture. This power is, however, diminished
by the instability of feedforward systems: in general, recently learned patterns tend
to erode past learning. This instability arises from two sources. First, even if a
chosen category is the best match for a given input, that match may nevertheless
be a poor one, chosen only because all the others are even worse. Established codes
are thus vulnerable to recoding by "outliers." Second, learning laws such as Eq. (13)
imply that a weight vector tends toward a new vector that encodes the presently
active pattern, thereby weakening the trace of the past. Thus weight vectors can
eventually drift far from their original patterns, even if learning is very slow and
even if each individual input makes a good match with the past as recorded in the
weights.

The many existing variations on the three-level instar-outstar theme illustrate
some of the ways in which this family of models can be adapted to cope with the ba-
sic system's intrinsic instability. One stabilization technique causes learning to slow
or cease after an initial finite interval, but then a subsequent unexpected pattern
cannot be encoded, and instability could still creep in during the initial learning
phase. Another approach is to restrict the class of input patterns to a stable set.
This technique requires that the system can be sufficiently well analyzed to iden-
tify such a class, like the orthogonal inputs of the linear associative memory model
(Figure 9), and that all inputs can be confined to this class. An often successful
way to compensate for the instability of these systems is to slow the learning rate
to such an extent that learned pattermns are buffered against massive recoding by
any single input. Of course, then, each pattern needs to be presented very many
times for adequate learning to occur, a fact that was discussed, for example, by
Rosenblatt in his critique of back propagation.

22. ADAPTIVE RESONANCE THEORY (ART)
It was analysis of the instability of feedforward instar-outstar systems that led to
the introduction of adaptive resonance theory (ART)"1 and to the development
of the neural network systems ART 1 and ART 2.7,8 ART networks are designed,
in particular, to resolve the stability-plasticity dilemma: they are stable enough
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to preserve significant past learning, but nevertheless remain adaptable enough to
incorporate new information whenever it might appear.

The key idea of adaptive resonance theory is that the stability-plasticity dilem-
ma can be resolved by a system in which the three-level network of Figure 15 is
folded back on itself, identifying the top level (F 3 ) with the bottom level (F 1 ) of the
instar-outstar mapping system. Thus the minimal ART module includes a bottom-
up competitive learning system combined with a top-down outstar pattern learning
system. When an input a is presented to an ART network, system dynamics initially
follow the course of competitive learning (Figure I4), with bottom-up activation
leading to a contrast-enhanced category representation at F2 . In the absence of
other inputs to F2 , the active category is determined by past learning as encoded
in the adaptive weights in the bottom-up filter. But now, in contrast to feedforward
systems, signals are sent from F2 back down to F, via a top-down adaptive filter.
This feedback process allows the ART module to overcome both of the sources of
instability described in Section 21, as follows.

First, as in the competitive learning module, the category active at F2_ may
poorly match the pattern active at F1 . The ART system is designed to carry out a
matching process that asks the question: should this input really be in this category'?
If the answer is no, the selected category is quickly rendered inactive, before past
learning is disrupted by the outlier, and a search process ensues. This search process
employs an auxiliary orienting subsystem that is controlled by the dynamics of the
ART system itself. The orienting subsystem incorporates a dimensionless vigilance
parameter that establishes the criterion for deciding whether the match is a good
enough one for the input to be accepted as an exemplar of the chosen category.

Second, once an input is accepted and learning proceeds, the top-down filter
continues to play a different kind of stabilizing role. Namely, top-down signals that
represent the past learning meet the original input signals at F1 . Thus the F,
activity pattern is a function of the past as well as the present, and it is this blend
of the two, rather than the present input alone, that is learned by the weights in
both adaptive filters. This dynamic matching during learning leads to stable coding,
even with fast learning.

An example of the ART 1 class of minimal modules is illustrated in
Figure 16. In addition to the two'adaptive filters and the orienting subsystem.
Figure 16 depicts gain control processes that actively regulate learning. Theorems
have been proved to characterize the response of an ART 1 module to an arbitrary
sequence of binary input patterns.7 ART 2 systems were developed to self-organize
recognition categories for analog as well as binary input sequences. One principal
difference between the ART 1 and the ART 2 modules is shown in Figure 17. In
examples so far developed, the stability criterion for analog inputs has required a
three-layer feedback system within the F1 level: a bottom layer where input pat-
terns are read in; a top layer where filtered inputs from F2 are read in; and a middle
layer where the top and bottom patterns are brought together to form a matched
pattern that is then fed back to the top and bottom F1 layers.
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FIGURE 16 An ART 1 module for stable, self-organizing categorization of an arbitrary
sequence of binary input patterns.

23. ART FOR ASSOCIATIVE MEMORY
A minimal ART module is a category learning system that self-organizes a sequence
of input patterns into various recognition categories. It is not an associative mem-
ory system. However, like the competitive learning module in the 1970s, a minimal
ART module can be embedded in a larger system for associative memory. A sys-
tem such as an instar-outstar module (Figure 15) or a back-propagation algorithm
(Figure 6) directly pairs sequences of individual vectors (a,b) during learning. If
an ART system replaces levels F1 and F2 of the instar-outstar module, the asso-
ciative learning system becomes self-stabilizing. ART systems can also be used to
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FIGURE 17 Principal elements of an ART 2 module for stable, self-organizing
categorization of an arbitrary sequence of analog or binary input patterns. The F1 level
is a competitive network with three processing layers.

pair sequences of the categories self-organized by the input sequences (Figure 18).
Moreover, the symmetry of the architecture implies that pattern recall can occur
in either direction during performance. This scheme brings to the associative mem-
ory paradigm the code compression capabilities of the ART system, as well as its
stability properties.
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FIGURE 18 Two ART systems combined to form an associative memory architecture.

24. COGNITRON AND NEOCOGNITRON
In conclusion, we will consider two sets of models that are variations on the themes
previously described. The first class, developed by Kunihiko Fukushima, consists of
the cognitron 9 and the larger-scale neocognitron. 10 '1 ' This class of neural models
is distinguished by its capacity to carry out translation-invariant and size-invariant
pattern recognition. This is accomplished by redundantly coding elementary fea-
tures in various positions at one level; then cascading groups of features to the next
level; then groups of these groups; and so on. Learning can proceed with or without
a teacher. Locally the computations are a type of competitive learning that use
combinations of additive and shunting dynamics.



Neural Network Models for Pattern Recognition and Associative Memory 35

25. SIMULATED ANNEALING
Finally, in addition to the probabilistic weight change laws which were a prominent
feature of, for example, the modeling efforts of pioneers such a: ý,nblatt and
Amari, another class of probabilistic weight change laws appears ;ii mnore recent
work under the name simulated annealing, introduced by S. Kirkpatrick, C. D. Gel-
latt, and H. P. Vecchi. 29 The main idea of simulated annealing is the transposition
of a method from statistical mechanics, namely the Metropolis algorithm, 34 into
the general context of large complex systems. The Metropolis algorithm provides
an approximate description of a many-body system, namely a material that an-
neals into a solid as temperature is slowly decreased. Kirkpatrick et al.drew an
analogy between this system and problems of combinatorial optimization, such as
the traveling salesman problem, where the goal is to minimize a cost function. The
methods and ideas, as well as the large-scale nature of the problem. are so closely
tied to those of neural networks that the two approaches are often linked. This
link is perhaps closest in the Boltzmann machine,' which uses a simulated anneal-
ing algorithm to update weights in a binary network similar to the additive model
studied by Hopfield. 2s

26. CONCLUSION
We have seen how the adaptive filter formalism is general enough to describe a
wide variety of neural network modules for associative memory, category learning,
and pattern recognition. Many systems developed and applied in recent years are
variations on one or more of these modular themes. This approach can thus provide
a core vocabulary and grammar for further analysis of the rich and varied literature
of the neural network field.
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How are the highly ordered sets of axonal connections so characteristic of
organization in the adult vertebrate central nervous system formed dur-
ing development? Many problems must be solved to achieve such precise
wiring: axons must grow along the correct pathways and must select, their
appropriate target(s). Even once the process of target selection is complete,

however, the many axons that comprise a particular projection must still
arrange themsives in an orderly, and highly stereotyped pattern, typically
one in which nearest-neighbor relations are preserved so that the terminal
arbors of neighboring projection neurons are also neighbors within the tar-

get. Here, I would like to consider the process by which this final patterning
of neuronal connections comes about during development. Studies of the
vertebrate visual system, reviewed here, have provided extensive evidence
in favor of the hypothesis that an activity-dependent competition between
axonal inputs for common postsynaptic neurons is responsible in good part
for the establishment of orderly sets of connections.
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COMPETITION IN THE FORMATION OF OCULAR DOMINANCE
COLUMNS IN THE MAMMALIAN PRIMARY VISUAL CORTEX.
Many insights into developmental mechanisms underlying the formation of orderly
connections have come from studies of the mammalian visual system, in which the
clear-cut patterning of connections is exemplified in the highly topographic order-
ing of projections and strict segregation of inputs from the two eyes at successive
levels of visual information processing (for reviews, see Rodieck"4 and Sherman
and Spear6"). Ganglion cell axons from each eye project to the lateral geniculate
nucleus (LGN) on both sides of the brain. However, within the LGN, axons from
the two eyes terminate in a set of separate, alternating eye-specific layers that are
strictly monocular2 2 (see Figure 1). Neurons in the LGN project, in turn, to layer
4 of the primary visual cortex where, again, axons are segregated according to eye
of origin into alternating monocularly innervated patches that represent the system
of ocular dominance columns within cortical layer 4.23"26.59,60

O LGN

FIGURE 1 A simplified diagram of the mammalian visual pathways. Only connections
from each eye to the left side of the brain are shown. Retinal ganglion cell axons
from the two eyes travel to the lateral geniculate nucleus (LGN) of the thamalus,
where their terminals are segregated in separate eye-specific layers. The axons of
neighboring retinal ganglion cells within each eye terminate in neighboring regions
within the appropriate layers, establishing a topographically ordered map. LGN neurons,
in turn, project to layer 4 of the primary visual cortex where again axonal terminal
arbors of LGN neurons representing the two eyes are segregated into alternating ocular
dominance patches.
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FIGURE 2 Summary of the prenatal development of the eye-specific layers in the
cat's LGN. Shaded areas indicate regions within the LGN simultaneously occupied by
ganglion cell axons from the two eyes at different times in development, as derived
by the anterograde transport of intraocularly injected tracers. Stick figures show the
appearance of representative ganglion cell axons from the ipsilateral (shorter axons
at each age) and contralateral (longer) eyes, based on studies of the morphology of
individual axons filled with horseradish peroxidase in vitro (see Shatz, 67 for more
details; reproduced with permission from Shatz65). The eye-specific layers emerge
as retinal ganglion cell axons, withdraw delicate sidebranches from inappropriate
regions, and elaborate complex terminal arbors within appropriate regions of the LGN.
E=embryonic age; gestation in the cat is 65 days.

Remarkably, neither the layers within the LGN nor the columns within the cor-
tex are present initially during development (for reviews, see Sretavan and Shatz, 69

Shatz, 67 and Miller and Stryker4 2). When retinal ganglion cell axons from the two
eyes first grow into the LGN, they are intermixed with each other throughout a good
portion of the nucleus; the eye-specific layers emerge as axons from the two eyes
gradually remodel by withdrawing modest branches from inappropriate territory
and growing extensive terminal arbors within appropriate territory 69 (Figure 2).
Physiological studies in vitro6 2 and electron microscopic examination of identified
retinal ganglion cell axons8 ,6 7 suggest that this remodeling is accompanied by the
reorganization of synapses from the two eyes such that initial binocular convergence
is replaced by monocular inputs.
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FIGURE 3 The postnatal development of the ocular dominance patches within layer
4 of the primary visual cortex of the cat is summarized. The location of LGN axons is
monitored by means of the transneuronal transport through the LGN of radioactively
labeled material (which appears white in these darkfield photographs) injected into one
eye. The adult pattern of layer 4 labeling-patches separated by gaps of roughly equal
size-can be seen by 92 days postnatal. However, at 2 weeks postnatal, the pattern of
labeling within layer 4 is continuous, indicating that LGN axons representing the two
eyes are intermixed with each other. (Elased on experiments presented in LeVay et
al.34 )

Ocular dominance columns in layer 4 form from extensively intermixed LGN
inputs representing the two eyes (Figure 3), presumably also by a process of axonal
remodeling and synapse elimination. At present, little is known about the exact
morphological details because few individual axons have been successfully labeled
for study, but microelectrode recordings have shown that initially the majority of
neurons in cortical layer 4 receive functional inputs from LGN afferents representing
both eyes.34 ,3 5 Thus, here too, ocular segregation emerges from an initial condition
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FIGURE 4 (cont'd.) The eflects of monocular eye closure at birth on the subsequent
(adult) organization of the ocular dominance columns in layer 4 of the monkey visual
cortex, as revealed by the transneuronal transport method (see Figure 3). (a) The
normal tangential organization of LGN afferents within layer 4 into alternating stripes
of equal width representing the injected and uninjected eye. (b) The representation
of the open eye within layer 4 following monocular deprivation-LGN axons occupy
most of layer 4, with only small unlabeled regions remaining for the LGN axons
representing the closed eye. (c) The pattern of transneuronal labeling resulting from
injection of the closed eye is complementary to that shown in (b), indicating a shrinkage
of territory devoted to the representation of the closed eye within layer 4. Reprinted with
permission from Hubel et al.26

of functional synaptic convergence of inputs representing the two eyes onto common
(layer 4 cortical) neurons (See Figure 5: compare neonate and adult). In higher
mammals, the formation of the LGN layers occurs largely, if not entirely, prenatally
and precedes the onset of ocular dominance column formation within the cortex,
which occurs largely (monkey) or entirely (cat) postnatally.34,35 ,47

,
61

How do inputs representing the two eyes segregate from each other to form
layers or columns? The first clues came from the pioneering studies of Hubel and
Wiesel on the effects of visual deprivation on the functional organization of the
primary visual cortex. In the normal adult visual cortex, the majority of neurons are
binocular: that is, they respond to visual stimulation of either eye. Even binocular
neurons tend to be dominated by one eye or the other, and as mentioned above,
layer 4 neurons tend to be exclusively driven by stimulation of one eye only so that
the cortex is evenly divided into ocular dominance columns for both eyes.- 3 26'60

However, if one eye is deprived of vision by closing the eyelids at birth for several
days to weeks, the ocular dominance distribution of neurons in visual cortex is
drastically shifted: as shown in Figure 5 (MD), now, the majority (90%) of neurons
are monocularly driven only by stimulation of the open eye.1 5'2 6 (Neurons in the
retina and LGN remain responsive to their normal inputs.78 ) The physiological shift
in ocular dominance within the cortex is paralleled by a profound change in the
anatomical organization of LGN axons within layer 4: LGN axons representing the
open eye now occupy most of layer 4, while those representing the closed eye are
relegated to very small patches2 6 (see Figure 4).

The observation that the wiring of LGN axons and the eye preference of cor-
tical neurons can be influenced by early visual experience sets the stage for the
idea that use of the visual system is required for its normal development and for
the maintenance of its connections, at least during an early period of susceptibility
called the "Critical Period.,, 25 ,35 But how might abnormal use, such as the occlu-
sion of one eye, result in such profound changes in connectivity at the level of the
visual cortex? The most reasonable explanation is that a use-dependent synaptic
competition between LGN axons serving the two eyes for layer 4 neurons normally
drives the formation of the ocular dominance columns during the critical period.
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FIGURE 5 Idealized summary diagram of the effects of various manipulations that
alter the pattern or levels of visually driven activity on the ocular dominance of visual
cortical neurons as assessed physiologically. In the normal adult cortex (ADULT), the
majority of neurons are binocularly driven, with a roughly even distribution of neurons
representing each eye (group 1 = neurons responding exclusively from the right eye;
group 2 = neurons responding predominantly to the right eye but some also from the
left eye; group 3 = neurons responding equally to the two eyes; group 4 = neurons
responding predominantly to the left eye; and group 5 = neurons responding exclusively
to the left eye).60 ,7 3 The majority of group 1 and 5 neurons are found within layer 4. In
neonates, there are very few monocularly driven neurons, presumably since inputs from
the two eyes are extensively intermixed even within layer 4.34 If the right eye is closed
at birth (0), then an ocular dominance shift in favor of the left eye (0) occurs with long-
term monocular deprivation (MD). 25 ,6° However, if MD is combined with cortical infusion
of muscimol (MD+MUSC)52 during the critical period, then the shift in favor of the open
eye is prevented close to the infusion site and instead a shift in favor of the closed
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FIGURE 5 (cont'd.) eye results. Binocular deprivation (BD) 79'73 during the critical
period, however, does not have an obvious effect on cortical ocular dominance,
whereas intraocular injections of TTX during the same period retains, or possibly
exaggerates, the highly binocular distribution present in neonates 73 (cf. TIX and
Neonates). In contrast, alternating monocular deprivation or strabismus (STRAB)
causes a complete loss of binocular neurons within the cortex.7 7 See text for further
details.

Consequently, unequal use caused by monocular deprivation could bias the out-
come in favor of the open eye. Many lines of evidence support the suggestion that
competitive interactions are involved. Binocular deprivation leaves the ocular dom-
inance of cortical neurons unaltered (Figure 5: BD),79 although neurons eventually
do not respond briskly to visual stimulation. In a clever experiment, Guillery19

demonstrated that competitive interactions are not only present, but must occur
locally within the cortex, between LGN axons subserving corresponding regions of
the visual field. He sutured one eye closed and then made just a small lesion in the
open eye, destroying a localized group of ganglion cells there. As a consequence,
the effects of monocular deprivation were manifested everywhere except within the
small region receiving LGN..axons representing the lesioned area of the open eye and
the corresponding region of the closed eye. Thus equal use of the two eyes during
the critical period subserves competitive interactions whose outcome is manifested
in the even distribution of ocular dominance columns. Similar competitive interac-
tions are thought to operate even earlier in development to drive the formation of
LGN layers, as discussed more fully at the conclusion of this article.

THE ROLE OF PATTERNED NEURAL ACTIVITY IN COMPETI-
TIVE INTERACTIONS
Signalling by neurons is, of course, via action potentials and synaptic transmission;
hence, the effects of visual experience on cortical organization must be a conse-
quence of alterations in either the level or patterning (or both) of neural activity
within the visual pathways. The most graphic demonstration that this must be the
case comes from experiments in which the inputs from both eyes are completely si-
lenced by injecting Tetrodotoxin (TTX), a blocker of the sodium channel, for several
weeks postnatally during the critical period and then examining the consequences
on the formation of ocular dominance columns in layer 4.73 Intraocular application
of TTX conveniently silences the entire pathway from retina to cortex since there
is very little spontaneously generated activity in central visual pathways in the ab-
sence of the eyes. 73 Segregation of LGN axons into patches within cortical layer
4 was prevented completely, and neurons in layer 4, normally monocularly driven,
were instead binocularly driven (Figure 5: TTX), reminiscent of the initial period
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of normal postnatal development. 34,35 Indeed, at present it is not known whether
the effect of the TTX treatment is to simply arrest development or to permit con-
tinued but undirected growth of LGN axon terminals within layer 4. Examination
of axonal morphology should eventually clarify this issue. Analogous results are ob-
tained when cortical activity alone is blocked (both pre- and postsynaptically), by
infusing TTX locally via an osmotic minipump 51: such treatment, when performed
during the critical period, prevents the shift in cortical ocular dominance produced
by monocular eye closure.

These experiments indicate that neural activity is necessary for ocular dom-
inance columns to form during development (and for them to be perturbed with
monocular deprivation), but they do not reveal how an activity-dependent signal
might permit the selection of appropriate inputs from each eye to generate the seg-
regated pattern characteristic of the adult geniculocortical projection. Experiments
in which the use of the two eyes remains equal, but is never synchronous, provide
some clues. During the critical period, if artificial strabismus is produced by cut-
ting the extraocular muscles of one eye, thereby disrupting normal eye alignment.
or if the eyes are closed alternately so that the total amount of vision received by
each eye is the same, but vision is never binocular, then essentially every neuron in
the primary visual cortex becomes exclusively monocularly innervated, with cells
of like o,',I? dominance grouped into entirely "monocular" columns (see Figure 5:
AMD) (recall that in normal animals, only layer 4 is monocular).2 4 77 These results
suggest that information concerning the relative timing of activity in the two eyes
is somehow used to distinguish inputs at the cortical level: asynchrony leads to
ocular segregation; synchrony maintains binocularity.

The conclusion that the formation of ocular dominance columns is influenced
by the timing and patterning of neuronal activity within the retinae is underscored
by the results of an experiment by Stryker and Strickland7" in which retinal ac-
tivity was first blocked by intraocular injections of TTX, but then experimentally
controlled by electrically stimulating the optic nerves either synchronously or asyn-
chronously. Synchronous stimulation of the two nerves prevented the formation of
ocular dominance columns, whereas asynchronous stimulation permitted them to
form. The only difference between the two experiments was the timing of stimula-
tion, thereby demonstrating directly That the patterning of neural activity provides
sufficient information for ocular segregation to occur, at least at the level of the
primary visual cortex.

The above considerations can also explain why ocular dominance columns can
develop even when animals are binocularly deprived or reared in the dark dur-
ing the critical period.73 In the absence of visual stimulation, ganglion cells in the
mammalian retina of adults3 6' 53 and even in fetal animals1

,'
39 fire action poten-

tials spontaneously. Such spontaneous firing could supply activity-dependent cues,
provided that ganglion cell firing in the two eyes is asynchronous.43'8 2

Before examining further how the timing and patterning of impulse activity
might lead to segregation of geniculocortical afferents, it is worth considering briefly
why an alternative hypothesis for the formation of segregated inputs, one that in-
vokes the existence of eye-specific molecular labels within the cortex, is at odds with
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most experimental observations. First, geniculocortical axons segregate to form oc-
ular dominance columns whose precise locations within the visual cortex are unpre-
dictable, although the global arrangement of the columns is similar from one animal
to the next. 26 Second, blockade of neural activity within the eyes prevents segre-
gation of geniculocortical axons (themselves not directly affected by TTX). Thus,
if eye-specific labels were present within the cortex, they should still have been
recognized by LGN axons. Moreover, such markers should operate to form columns
regardless of the patlern of '1,ctrical stimulation of the optic nerves (synchronous
vs. asynchronous). Third, there is no obvious tendency for axons representing the
right or left eyes to be grouped together prior to segregation 34,63 ; indeed, activity-
:ependent models of ocular dominance column formation can easily produce seg-

regated inputs from an initially randomly intermixed condition (see Miller et al.,"3

for more details). It should be noted that the absence of such labels with respect to
eye of origin in no way argues against the existence of specific molecular cues that
could initially guide axons to their appropriate targets (LGN, visual cortex) during
development, or that could help to establish coarse retinotopic projections within
these targets. By analogy with studies in lower vertebrates (for review see Udin and
Fawcett 76), such cues are highly likely to be present in the mammalian CNS as well.
However, once axons reach their correct target and establish a coarse topographic
projection, activity-dependent interactions could provide the major cues necessary
for segregation.

Finally, a set of creative experiments performed in the amphibian visual system
also argues against the presence of intrinsic eye-specific labels within the postsynap-
tic targets of retinal ganglion cells. In amphibians during larval development, the
projections from retinal ganglion cells to their principal target, the optic tectum,
are entirely crossed. Consequently, each tectum receives a map from the whole
contralateral retina. The map is topographically orderly, such that the axons of
neighboring retinal ganglion cells terminate in neighboring regions of the optic
tectum. In frogs, it is possible to perform experimental manipulations in the em-
bryo to transplant an extra eye onto one side of the head. Axons from both the
normal and transplanted eyes are then capable of growing into the optic tectum,
artificially creating a competitive situation. Constantine-Paton and her colleagues
have shown that axons from both eyes segregate into eye-specific stripes reminis-
cent of the stripe-like pattern of the mammalian geniculocortical projection 32 (see
Figure 6(a)). Thus, segregation of eye-specific inputs can occur in an experimen-
tally manipulated system that normally never forms a segregated projection and
therefore is highly unlikely to contain intrinsic eye-specific labels within the post-
synaptic target. Moreover, blockade of action potential activity with TTX causes
ganglion cell axons from the two eyes to desegregate 6,'405 0 (see Figure 6(b)). In
amphibia, connections between retina and tectum continue to grow throughout lar-
val and early postmetamorphic life, in a process involving the continual reshaping
of synaptic connections. 14' 49 These experiments suggest an analogous conclusion,
that the maintenance of segregated inputs in these three-eyed frogs is a dynamic
ongoing process that requires neural activity (presumably asychronous) in the two
eyes.
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(a) (b) (c)

FIGURE 6 The organization of ganglion cell axon projections to a dually innervated
optic tectum in three-eyed frogs, as revealed in tectal wholemounts by injecting one of
the two eyes with horseradish peroxidase. (a) Axons from the two eyes segregate into
alternating stripes reminiscent of the system of mammalian ocular dominance columns
in cortical layer 4. Desegregation occurs when either TTX (not shown) or APV ((b)
after 2.5 weeks; (c) after 4-weeks treatment) is infused into the tectum. Modified, with
permission, from Cline et al. 9

CELLULAR CORRELATES OF ACTIVITY-DEPENDENT
COMPETITION
The finding that the synchronous activation of afferents prevents them from seg-
regating, while asynchronous activation promotes segregation, indicates that the
timing of presynaptic activity is crucial to the process. Studies also suggest that
involvement of the postsynaptic cell is necessary. For example, in the mammalian
visual cortex, when visual stimulation through one eye is paired simultaneously with
postsynaptic depolarization produced by extracellular stimulation, the strength of
inputs from the stimulated eye can be enhanced in some cells from minutes to
hours.' 7 The effect is quite variable and is more frequently produced in young ani-
mals during the critical period than in adults; nevertheless, this experiment serves
to illustrate the point that coincidence of pre- with postsynaptic activity can, at
least under certain circumstances, enhance visually driven inputs.

Manipulations that block postsynaptic activity exclusively can also alter the
outcome of competition in the visual system. Rteiter and Stryker•l have shown that
when cortical neurons are silenced during the critical period by the intracortical
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infusion of muscimol, a GABA-A receptor agonist, monocular eye closure has sur-
prising consequences for the inputs from the two eyes: within the silenced region of
cortex, inputs from the closed eye come to dominate over inputs from the open eye
(see Figure 5: MD and muscimol), whereas, of course, the reverse is true outside the
silenced zone. This observation shows that the activity of postsynaptic cortical cells
is highly likely to be involved in the synaptic reorganization occurring during the
critical period, since the same patterning of presynaptic activity produces different
outcomes depending on the state of activation of the postsynaptic cell.

The requirement for the participation of both pre- and postsynaptic partners
in activity-dependent rearrangements, and the fact that coincident activation can
strengthen coactivated inputs, is consistent with the idea that a Hebb rule may
govern the process of synapse rearrangements during ocular dominance column de-
velopment in mammals (and in three-eyed frogs) (for review see Brown et al. 7 ;
see Kossel et al. 3" for an alternate view). Htebb 21 suggested that when pre- and
postsynaptic neurons are coactivated, their synaptic connections are strengthened,
whereas connections are weakened with the lack of coincident activation. In this
context, the muscimol experiment described above"2 is also consistent with a Hebb
rule in the sense that the levels of presynaptic activity in geniculocortical axons rep-
resenting the closed eye are better matched to the silenced postsynaptic neurons
than those inputs represeating the open eye. Thus, the correlated firing of nearby
ganglion cells within one eye, and the lack of synchronous firing of ganglion cells in
the other eye could provide appropriate signals to produce the regional strengthen-
ing and weakening of synaptic inputs needed for segregation to take place.

These activity-dependent properties of visual cortical synapses during the criti-
cal period are very reminiscent of some of the well-known characteristics of synapses
in the adult mammalian hippocampus that are capable of undergoing long-term po-
tentiation (LTP): that is, a long lasting increase in synaptic strength produced with
the appropriate matching of pre- and postsynaptic activation. 7,45 In the CA1 region
of the hippocampus, many lines of experimentation indicate that activation of the
NMDA receptor (N-methhyl-D-aspartate) on postsynaptic neurons by means of the
presynaptic release of glutamate is required for LTP.s° The consequent strength-
ening of synaptic transmission appears to be due at least in part to a presynaptic
change: an increase in transmitter tfelease from the presynaptic terminals. 5' 37'8 1

The wealth of information on LTP, and its similarities with activity-dependent de-
velopment, has prompted many recent experiments in the visual s. stem designed to
learn whether the two forms of synaptic change share similar celiular mechanisms.
Of course, it should be noted that in at least one respect, the two must differ
ultimately in that in development major structural changes occur not only in indi-
vidual synapses but also in the overall morphology of presynaptic terminals, since
some terminals are actually eliminated while others are newly formed. Moreover,
the physiological properties of developing synapses are very different from those of
adult, suggesting that the parameters for pat~terned activity to produce synaptic
change may also differ.

A major question is whether NMDA-receptor activation is necessary for de-
velopmental plasticity. This is a reasonable question to pose since glutamate is
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thought to be the excitatory neurotransmitter released by retinal ganglion cells
in all vertebrates 27,3 1 and also by LGN neurons in mammals. 2' The most com-
pelling evidence in favor of the specific involvement of NMDA-receptors in activity-
dependent development comes from recent studies of the retinotectal system in
fish and frogs. For instance, in three-eyed frogs, the ocular dominance stripes
desegregate in the presence of the NMDA receptor antagonist APV (2-amino-5-
phosphonovaleric acid),' suggesting that activation of this receptor is necessary for
the maintenance of segregated inputs (see Figures 6(b) and (c)).

NMDA receptor activation is also apparently necessary for the maintenance of
two other activity-dependent processes known to occur in the retinotectal system.
The first is in the refinement of topographic projections from retina to tectum that
occurs during regeneration of the optic nerve in goldfish. Ganglion cell axons can
establish coarse topographic projections even when activity is blocked with TTX,
presumably because activity-independent molecular cues are unaltered.' 2 '16 How-
ever, the fine-tuning of axon terminal arbors necessary for the re-establishment of
highly refined connections is prevented. 4 1'5 6 In this case, topographic fine-tuning
would be expected to occur if the activity of neighboring retinal ganglion cells was
highly correlated, while that of distant ganglion cells was not-a situation naturally
produced with visual stimulation. Consistent with this suggestion, rearing animals
in stroboscopic light, whir.,h causes all ganglion cells to fire in near synchrony, pre-
vents the fine-tuning of topography during regeneration. 5 7 Recent experiments have
demonstrated that infusion of APV also blocks the fine-tuning of the retinotectal
map.," Moreover, Schmidt has demonstrated that during the period of map refine-
ment following optic nerve regeneration, low frequency electrical stimulation of the
optic nerve causes long-term potentiation of the postsynaptic tectal response which
is also blocked by APV.

Another example demonstrating the involvement of NMDA receptors involves
the process by which binocular neurons are normally created and maintained in
the frog optic tectum. Although the optic tectum only receives direct input from
the retinal ganglion cells in the opposite eye, an indirect pathway from one tectum
to the other via a relay nucleus, the isthmo-tectal nucleus, does convey input from
the other eye to create binocular neurons. Here too, the maintenance of the binoc-
ular map is activity dependent, as tlemonstrated by the fact that rotation of one
eye in its orbit leads to a systematic and anatomically demonstrable re-wiring of
isthmo-tectal connections so as to preserve ocular correspondence. 7" The rewiring
induced by eye rotation is prevented by infusion of APV into the optic tectum. 5 5 An
essential finding in these studies is that the lexels of APV necessary to prevent the
activity-dependent rearrangements apparently do not block appreciably retinotec-
tal synaptic transmission or the excitability of the postsynaptic neuron. 9' s Thus,
the APV treatment does not act like TTX to block neural activity generally, but
more likely acts specifically to prevent whatever cascade of events is triggered by
NMDA receptor activation.

The specific involvement of the NMDA receptor in the synaptic alterations
occurring during the critical period in the mammalian visual cortex is more contro-
versial, but there is no doubt that NMDA receptors are present throughout (but also
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after) the relevant times in the cat visual system. Physiological studies of cortical
neurons demonstrate that both their spontaneous firing and their responses to vi-
sual stimulation can be decreased by APV, and that lower doses of APV are needed
in younger animals.'15, 4 ' 7 4 Moreover, Fox et al."5 found that there is a systematic
change in the laminar distribution of responsiveness to iontophoretic application
of APV with age: in neonates. neurons in all cortical layers are sensitive to APV,
whereas uy the end of the critical period, the visually evoked responses of neurons in
the deeper cortical layers (layers 4, 5, and 6) are not affected by APV iontophoresis.
Thus, the changing susceptibility of cortical neurons in layer 4 to APV application
is generally correlated with the period in which segregation of the geniculocortical
afferents occurs. However, the fact that the superficial cortical layers remain highly
sensitive to NMDA receptor blockade after the critical period draws to a close is
difficult to reconcile with a simple view for the participation of NMDA receptors in
the events of activity-dependent segregation and visual cortical plasticity.

If NMDA receptors are to contribute to the mechanism underlying synaptic
rearrangements during the critical period, then pharmacological blockade of the
receptor might be expected to prevent the segregation of LGN axons into ocular
dominance patches within layer 4 in a fashion analogous to that found for the de-
segregation of stripes in three-eyed frogs. At present, this possibility has not been
investigated in the mammalian visual system. A correlate, that receptor blockade
might prevent the shift in ocular dominance toward the open eye caused by monoc-
ular eye closure, has been studied by using minipumps to infuse APV into the cat
visual cortex during the critical period.4' 2

1 Within the infusion zone, a shift to-
wards the open eye was prevented and, in fact, there was an unanticipated shift in
favor of the closed eye-reminiscent of the results obtained in a similar experiment
decribed above in which muscimo15 2 was infused in order to silence selectively the
postsynaptic cortical neurons without also blocking presynaptic afferent inputs. At
first glance, then, these results would seem to conform nicely to the hypothesis
that NMDA receptors play a specific role in activity-dependent cortical develop-
ment and plasticity. Unfortunately, the alternative interpretation exists, namely
that APV acts in a nonselective fashion to block postsynaptic activity, much as
muscimol does; that is, current flowing through an NMDA-gated channel is not
exclusively a "plasticity" signal. This'alternate interpretation seems quite likely in
view of the results of the iontophoresis experiment- described above demonstrat-
ing that activation of NMDA receptors is necessary for cortical neurons to respond
normally to visual stimulation. Thus, at present, it is not possible to draw strict
parallels between the requirement for NMDA receptor activation in hippocampal
LTP and an analagous role in visual cortical plasticity during development.

Even if a specific role for the NMDA receptor during development of the visual
cortex is eventually clearly established, the synaptic basis for its mode of action
remains to be elucidated. Clues come from experiments performed on rat visual
cortical slices in vitro which suggest that synaptic connections can undergo LTP
following appropriate tetanic stimulation of the white matter (which contains the
incoming LGN axons), both during neonatal life and in adulthood.1, 2 9' 30

.
46 LTP is

much more difficult to induce in cortical neurons than in the hippocampus (only



Impulse Activity and the Patterning of Connections During CNS Development 57

about 30% of all recorded neurons demonstrate the phenomenon in cortex), and. in
fact, frequently requires a concommitant reduction in local 'ahibitory influences by
application of a GABA antagonist; nevertheless, as in the hippocampus, LTP can be
blocked consistently by iontophoresis of APV. 1 However, urlike the hippocampus.
the circuitry of the cortex makes it difficult to stimulate an isolated excitatory
pathway in order to separate monosynaptic from polysynaptic inputs. Thus. wrile
the LTP studied in hippocampus clearly involves a change in the efficacy of- a
single type of excitatory synapse, what is called LTP in cortical slices may involve
Smixture of several effects, both excitatory and inhibitory. Nevertheless. These
observations raise the possibility that a cascade of physiological and biochemical
events similar to those knowp to occur during hippocampal LTP might also take
place during activity-dependent strengthening of visual cortical connections during
de-volopment.

In the formation of ocular dominance columns. both normally during devel-
opment and when perturbed by abnorrr, ! visual experience, some connections are
strengthened, but others must be weakened and likely even eliminated in order for
neurons in layer 4 to become monocularly driven. While a mechanism such as LTP
could help to explain synaptic strengthening in the visual cortex, what about the
reverse? A recent experiment by Artola et al. - suggests that it may be possible to
produce a weakening, or long-term depression (LTD), of synaptic transmission in
neurons in slices of rat visual cortex. These authors suggest that a level of mem-
brane depolarization above res,-ing level but below the greater level required for
the induction of LTP can produce LTD in active synapses. (A similar phenomenon
has been described in the hippocampus by Stanton and Sejnowski 7t ). Moreover.
Artola et al. report that LTD can be produced even in the presence of APV. con-
sistent with the idea that activation of an NMDA-gated channel is not involved.
This result may help to explain why monocular deprivation combined with cor-
tically infused muscimol5" or APV4 causes an ocular dominance shift in favor of
the closed eye within the inft.ion zone. Perhaps in the presence of these agents,
activation of inputs from the open eye brings cortical neurons only to a level of
membrane potential critical for LTD, consequently weakening those inputs. While
these experiments provide a convenient conceptual framework for thinking about
how activity-dependent synaptic change may occur during visual cortical devel-
opment, it will be essential first to understand these effects in vitro at the level of
single identificd synapses and next to demonstrate that similar alterations in synap-
tic efficacy indeed take place in vivo during the critical period as a consequence of
natural visual stimulation.
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GENERALITY OF ACTIVITY-DEPENDENT DEVELOPMENT IN
THE CENTRAL NERVOUS SYSTEM
The experiments discussed thus far provide compelling evidence in favor of the
idea that activity-dependent competitive interactions in the visual system can ac-
count for the establishmenr of highly segregated and topographically ordered sets
of connections during ocular dominance column development in mammals, and in
the regeneration and maiitena.cc of retinotectal connections in lower vertebrates.
Moreover, a variety of new experiments has begun to draw exciting parallels be-
tween the cellular bases for these events and those thought to underlie LTP in the
hippocampus. A common thread in all these examples is that synaptic change can
be produced by the appropriate patterning of presynaptic activity and its conjunc-
tion with postsynaptic activity. In the hippocampus, when these requirements are
met, evidence suggests that the resulting alterations may subserve memory and
learning. 7 In the postnatal visual system, they subserve synaptic rearrangements
that are generally dependent upon visual stimulation in order to provide the presy-
naptic correlations in neural activity necessary to preserve topographic relations,
and the asynchrony required for ocular segregation.

Studies of the development of connections between retinal ganglion cells and
their target neurons in the--IGN suggest that structured activity may even play a
role long before vision is possible. As mentioned early in this article, in the adult,
ganglion cell axons from the two eyes project to each LGN, where they terminate
in strictly segregated eye-specific layers. These layers are not present initially in
development but rather emerge as retinal ganglion cell axons from the two eyes
remodel their terminals 67 (see Figure 2). In the cat and monkey visual system,
the period during which the layers form is entirely prenatal. It begins before all
photoreceptor cells become postmitotic and is complete before photoreceptor outer
segments are present.13 Nevertheless, many lines of evidence suggest that here too
segregation comes about by a process of activity-dependent synaptic competition.
The idea that competitive interactions of some form might govern layer formation
originates with observetions that removal of one eye during development permits
axons from the other eye to occupy thp entire LGN.48'69 Hints that the competition
might be mediated by synaptic interactions comes from physiological observations
that individLal LGN neurons initially receive binocular inputs when the optic nerves
are electrically stimulated in vitro62 and that retinal ganglion cell axons from one
eye can make synaptic contacts in regions later exclusively innervated by axons
from the other eye.8'67 These observations provide evidence to suggest that synaptic
remodelling accompanies the formation of the eye-specific layers in the LGN.

What might be the source of activity-dependent signals during these early times
in development when vision is not possible? The most likely source is the spon-
taneously generated activity of retinal ganglion cells. In a technically remarkable
experiment, Galli and Maffei"8 succeeded in making microelectrode recordings from
fetal rat retinal ganglion cells in vivo and found that they fired spontaneously, some-
times correlated with each other when several cells were recorded together on the
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same electrode.36 Recently it has been possible to examine the spatial and tempo-
ral pattern of firing of up to 100 retinal ganglion cells simultaneously by removing
fetal and neonatal retinae and recording in vtro using a multielectrode array: re-
sults show t hat even in the absence of photoreceptor function, ganglion cells fire in a
very stereotyped bursting pattern, with neighboring cells firing in near synchrony. 3 9

These two experiments together provide evidence that the spontaneous activity of
retinal ganglion cells may have the appropriate spatiotemporal patterning to pro-
vide necessary activity-dependent cues for the formation of topographically ordered
and segregated inputs to the LGN and other central visual targets of ganglion cell
axons.

If spontaneous activity does play a role in the segregation of retinal ganglion
cell axons into the eye-specific layers within the LGN. then blockade of such activity
should prevent the formation of the layers. Minipump infusions of TTX into the
thalamus of fetal cats, indeed, block layer formation and correspondingly perturb
the branching pattern of individual retinal ganglion cell axons so that branches are
no longer restricted to appropriate zones within the LGN.7 ° Indeed, the effects of
TTX on the shapes of retinal ganglion cell axons in the cat are remarkably similar
to its effects on ganglion cell axons in the optic tectum of three-eyed frogs,50 as
shown in Figure 7. However, a criticism of the results is that TTX may have acted
in a non-specific fashion-to cause unregulated growth of the axons."0 Definitive
proof that this is not the case requires an experiment analogous to that performed
by Stryker and Strickland,7 2 in which the patterning of neural activity is specifi-
cally perturbed. This should be possible in future, when the mechanisms for the
generation of synchronous bursting among retinal ganglion cells are better under-
stood. Meanwhile, it should be noted that ganglion cell axon growth is not entirely
unregulated in the presence of TTX: the axons are still capable of detecting and
stopping their growth at the LGN boundaries.

The results of the experiments described above permit an important generaliza-
tion concerning the universality of activity-dependent synaptic interactions. During
normal development, such interactions may be driven not only by the normal pat-
tern of use (e.g., visually evoked activity), but even earlier before vision begins by
patterned spontaneously generated activity. This suggestion raises the possiblility
that spontaneously generated activity elsewhere in the CNS during development
may play a similar role in establishing orderly sets of connections. If so, then the
synaptic changes produced by activity-dependent interactions early in development
may be at one end of a continuum of synaptic change, the other end of which are the
use-dependent alterations in synaptic strength associated with learning and mem-
ory. Although the changes occurring during development require major anatomical
restructuring of axons, whereas those occurring during learning and memory are
more likely to be confined to individual synapses, 3 evidence presented here sug-
gests that the two types of change may not be all that different in terms of cellular
mechanisms. Future experiments will reveal the extent to which the two areas of
investigation converge, and whether there are similarities at the molecular level
as well. The existence of similar mechanisms could represent an extremely elegant
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solution to the complex problem of establishing and maintaining specific synaptic

connections throughout life.

(a)

TTX

//
Z. -N

(b)

----- ----

FIGURE 7 A comparison of the morphology of retinal ganglion cell axons in the fetal
cat at E57 (a) and the three-eyed frog (b) following TTX treatment. In both cases, the
terminal arbors of the axons are not as restricted as usual: in fetal cats, retinal ganglion
cell axons normally have terminal arbors that branch only in the inner or outer half of
the LGN rather than throughout (compare with Figure 2). In three-eyed frogs, the arbors
are usually restricted to one stripe and do not cross stripe boundaries (indicated by
dashed lines). Adapted from Sretavan et al.,70 and Reh and Constantine-Paton.s°
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mans. The findings show that there is "massive" distribution and sharing
of information occurring, respectively, through diverging and converging
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We examine the findings of reductionist approaches and find them inade-
quate to answer the problems arising from such widely distributed, multi-
functional, and highly converging networks whose activity may be variable.
Such findings indicate that "cooperative" actions among groups of neurons
may arise dynamically and nonlinearly in shifting contexts or "consensuses"
of response in which individual neurons may have different functions, even
during times when the behaviors are similar. Control of these systems is
emergent, "fuzzy," and error-prone rather than being reflexive or following
explicit causes and effects that can be read from the "switchboard" circuit
of the connections between neurons.
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A unified theoretical perspective is needed that accounts for both the emer-
gent and switch-board systems. Two problems apply in both cases: First,
animals may have evolved highly specialized behaviors whose underlying
neural networks may not necessarily reflect generally applicable principles.
Second, owing to their complexity, it may not be possible to character-
ize biological networks in sufficient detail to permit an understanding of
the system through simulation of the system itself. Thus, we use biological
information only as indications or points of departure to identify first prin-
ciples that are not initially intended to account for a particular behavior,
but to provide insights into generally applicable self-organizing processes at
the local-neuron level that can then be used to understand how large-group
action emerges.

We discuss a number of these avenues to examine computationally and bio-
logically, e.g., (1) error and variation may not only be products of but may
be causally related to the generation system dynamics. (2) The possibil-
ity that attractors provide avenues for energy or error minimization yields
mechanisms from which emerge many important building blocks, e.g., the
ability of groups of synapses to encode different categories of information
simultaneously; threshold effects that enhance system function: and input
signal dynamics whichi-not only carry encoded information but also provide
a variety of search strategies for locating attractor basins. (3) Minimal net-
work architectures may be identified that permit bifurcation into different
dynamical states. (4) Computer graphical analysis of spatio-temporal activ-
ity may show how different attractors are established and move and merge
in space and time. (5) Competition between synapses may continuously
sculpt and readjust network connections to changing conditions.
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1. INTRODUCTION: GRAND UNIFICATION THEORIES
Much of our discussion here will address the functional meaning of divergence and
convergence of connections among neurons. At the simplest level, both are anatomi-
cally definable: divergence occurs when a single neuron sends synaptic[l] projections
to many other neurons, and convergence occurs when many neurons send projec-
tions onto a common follower neuron. A more functional definition is to say that
divergence distributes information, whereas convergence produces sharing of infor-
mation. The consequence of divergence is to increase thý size of the co-functional
group of neurons, but this alone would only produce a set of independent pro-
cessors. In parallel programming, the programmer breaks down a problem into
different components and then assigns each component to a different processor:
the programmer distributes the components, but the processors act independent])'.
Similarly, there may be multiple sites of learning, perhaps arising from divergence
of input-stimulus pathways onto many different cells, and each site may invclve
different cellular mechanisms, but unless there is some interaction or convergence.
each site processes information independently. Because of its potential for sharing
information, convergence forces many neural sites to work interdependently. Thus.
convergence lies at the heart of our definition of parallel processing in biological
systems, 139' 1 43 as it does in-'simple connectionist neural networks'1 5 that have little
resemblance to biological ones.

In attempting to understand the functional implications of divergence and con-
vergence even in small networks, Pribram's 15 7 analogy to holography for distributed
memory storage seemed a possibility, 143 particularly, as Mpitsos and Cohan139 later
reported, since some networks are able to reorganize similar motor output patterns
of activity after neurons are removed that appear to control the pattern of activ-
ity going to motor neurons. In these studies, the neuron was removed from taking
part in the motor pattern by hyperpolarizing it below its firing threshold. This pro-
duced two types of errors: cessation of firing in the motor neurons that it controlled,
and cessation of all motor activity. Eventually, the original pattern recovered even
though the hyperpolarized neuron, and the motor neuron(s) it drove, did not take
part in the reformed motor pattern. Sjnce the overall firing pattern in the reformed
activity in the motor roots appeared similar to the original pattern, it seems rea-
sonable that the error was somehow distributed throughout the generator network.
By analogy to holography, the "picture" of activity emerging from the memory dis-
tributed among the pattern-generating neurons exhibited graininess when bits of
information were lost rather than exhibiting holes or gaps in some regions while re-
taining high resolution in others as would occur in some neural networks. 136 We use
"graininess" here because fewer neurons became involved in the reformed pattern
than in the original one, yet the overall structure of the pattern seemed the same.

[N We use the terms "synaptic projections" and "conneetions" to refer both to well-defined pre- and

postsynaptic structures involving localized transmitter release and to morphologically indistinct
structure involving diffuse transmitter release.
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There are problems even with the notion of holography, and in carrying the anal-
ogy of graininess too far, but for the present purposes, the real question that these
studies point to is one of memory storage and control in high-dimensional systems.
The high dimensionality that we refer to is not just in the number of interacting
components. It also includes, as we shall discuss, the storage of different forms of
information within the same set of synapses and nonlinear ways of addressing it.

While it is easy to see high dimensionality, and the consequences of it, in the
human cortex, it has not been so easy to admit that it exists in animals that
neurosciencc persists in calling "simple." A world view that polarizes animals into
simple and complex (into generalizations relating to invertebrate and vertebrate
phyla) emerged: e.g., see comment in Edelman."' A wide variety of factors, includ-
ing the technology of intracellular microelectrode recordings, 110 the ability to use
these recording methods on cells that r- be identified in different experimental
preparations, findings showing that aci i y is encoded within the central nervous
system itself for generating patterned motor activity,19' the importation of the
ethologist'sil 4 fixed-action pattern (FAP), identification of functional types of cells
such as command neurons that control central pattern generators and stereotyped
behaviors or FAPs, 46

,104 and the related findings showing that much of this activity
is genetically encoded,"9 worked together to entrench reductionism. Thougl. each
finding remains useful in its own right, concepts developed from rcductionist single-
neuron methods have proved inadequate to understand distributed, multifunctional.
and variable systems.

It is an interesting discovery that many biological systems, being potentially
high dimensional, may generate complex behavior that is governed by relatively
low-dimensional dynamics.[ 21 Choatic systems fall into this category, and, because
of their complex response dynamics, have been a subje.-t of considerable attention
over the past ten years.144

,154,158,172 We shall summarize some of these efforts. But
rather than dealing with the verifiability of chaos itself or of any dynamic process,
which has already been addressed sufficiently elsewhere,1 33 what w,ý wish to do
here is to address common features of ali nervous systems which give rise to or
exclude the ability of the systems to produce particular re'ponse dynamics. This is
to say that the important features are not so much whether repetitive activity, as
one example. is generated by limit-cycle or chaotic dynamics, as it i of the system
characteristics that permit different activities to arise.

It may be useful to forewarn the reader that our own perspective of brain func-
tion, or of th" function of systems composed of aggregates of nonlinearly interacting
components, has two parts, one experimental and the other philosophical. It is essen-
tial, of course, that, the philosophy or theory one holds about the actions of a system
must have a foundation on hard biological fact. However, problems arise when doing
only that. Trake just one example: All visual systems use on-responses to respond to

[2lThere is often no need to go beyon ! its definition of dynarmics simply as "time-dependent

variations of activity." though there are different forms of dynamucs. Rather than presenting x
formal definition, we shall introduce various ideas that modify our standard working definition as
they arise in the course of the discussion.
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the onset of light, and off-responses to respond to the off-set of light. But knowina
the cellular and physiological mechanisms that generate off-responses in some mol-
luscs would lead one completely astray about tihe mechanisms that produce thenm

in vertebrate animals. 132."1•6 Fvolutionarv selection mechanisms tend to optimize
the adaptive[Jl niechanisnis in each organism. Ihus, owing to diversification and
optimization. it is often difficult to determine what features permit generalization
across organisms, or for t liat llatter. across integrative systems within an organism
because the various systems nay have developed under different evolutionary con-
straints. It is possible to argue in favor of comments one might find in print, which
go something like this: Owing to the observation that evolution conserves mecha-
nisms, what we understand of inechanisnis of learning in a simple animal such as
a sea slug will allow us to understand the mechanism of learning in humans. But
to take that argument is to forget the equally important fact that diversification is
a cruciallyv important drivi n force i bi logical evolution, not only through varia-
tions arising fromi random factors. hut also through deterministic low-dimensional
factors whose dynamics gives themn a life of their own.

As neurobiologists, we are interested in tIhe integrative mechanisms of sea slugs.
crayfish, insects, leeches, lanipreys. or humans. But from a broader perspective.
wish to ask whether there are scale-independent principles, namely. ones that apply
to different levels of organization. from chemical processes to cellular. organismal.
and social ones. The question is: ('art we identify unifying principles, as one might
say of the attempts to establish grand unification theories (GUTs) in physics.
Unfortunately biological systems are too complex and uncontrollable to permit such
a synthesis presently, ats we shall try to show in the present paper. One possibility
is to conduct computer simulations of models that reduce a particular biological
system within the bounds of definable characteristics. While this may give insight
into mechanisms pertaining to that system, it, may not provide much insight into
general principles.

An alternative simulation approach is to use biological information as "points
of departure" to conduct computer simulations that do not necessarily attempt to
replicate the structure or function of any particular biological system. WVe go fur-
ther to suggest, that it might be useful to use simulation systems that are actually
extreme caricatures of biology, but whmich nonetheless might generally give insight
into biology. Eventually. what we hope to do is to obtain some idea about how net-
wurk architecture incorporates various linear and nonlinear interactions between
neurons to allow the network, as a whole, to generate different types of response
dynamics. We want also to understand how these fundamental network principles

1I Fhe term "adaptive" implies some conformation of a system ( biological or computational ) that

allows it to survive in its environment. Ihe process of conforming, a.s we shall discuss in detail in
Section 7. may represent a gradient descent in the error of the response with respect to the response
required for survival, or in the energy required to generate the response. That there may be local
minima in such conformations indicates that there may be non-optimal ways of responding. and.
conversely, it indicates that there may also be an. absolute minimum representing some optimal
way that the system might respond for a given environmental demand, though local tmnima may

be sufficient for survival.
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become sculpted selectively to produce the neural responses observed in individual
animals. The neural architecture in individual organisms may retain more or less
of these primal features, as required or permitted by the tasks presented for adap-
tive fitness. Thus, by seeking to identify common principles from which different
mechanisms may emerge, we are joining a call to reconsider the importance of com-
parative biology, 22 a subject which has suffered as research has become entrenched
in animal-specific encampments. But, as we hope will become apparent, our efforts
will not be to determine, for example, whether command processes are the same
in different animals or to define the command process more exactly. As important
as such issues are, we shall nonetheless aim to address comparisons at a broader or
more abstract level. Much of our discussion here will center on making analogies
through commonality in dynamical principles rather than in mechanisms.

There are, of course, many people who, in one way or another, have addressed
the question of how cooperative action arises among groups of intercommunicat-
ing individuals. The works of Grossberg, for example, on neural networks and
the mathematical foundation of many of psychological phenomena are too numer-
ous even to summarize adequately. 71' 72 It is a theme of modern neural network
connectionism,152 in studies of chemical dynamics, 6,53,167 and in mammalian ner-
vous system. 17 2 In many biological aspects, it can be traced back to Darwin, 40

and to Aristotle.'1 2 Sucb.works notwithstanding, we shall attempt to show in the
present discussion that a unifying theory of how neurons (or individuals of any
type) act cooperatively within a group is presently lacking. Along the way we shall
also attempt to identify ways for continuing the search for unifying principles.

In the course of this paper we shall first describe the behavioral, physiolog-
ical, and immunohistochemical studies in our experimental system the sea slug
Pleurobranchaea, and then compare these results to those obtained in other in-
vertebrate animals and in vertebrates. Another gastropod mollusc, the sea slug
Aplysia, has been the focus of reductionist researches in many laboratories that
have attempted to explain animal behavior and associative learning in terms of de-
finable reflexes. Section 6 deals with reductionism; we examine these findings, show
the difficulties that have arisen, and then reassess them from the point of view
of parallel-distributed processing. Given growing interest in nonlinear dynamics in
model mathematical and physical mrdels, we examine the viability of applying tools
arising from these studies to biological systems. In Section 8, we suggest computer
methods which might give some insight into how the integrated activity of large
numbers of neurons might arise from interactions occurring locally between indi-
vidual neurons. Thanks to the work of Rene Thom,18 2 we use a call from Aristotle'

to summarize the intent of our own work begun two decades ago: ""AAAi7 v dpýjv
&p66j1evot," namely, "Now let us make a fresh start," at least to point out what it
is that traditional thinking in neurobiology does not address sufficiently, and what
the problems are in progressing further.
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2. FINDINGS IN A SEA SLUG
2.1 BEHAVIOR

Pleurobranchaea is a large sea slug. a member of the opisthobranch gastropod mol-
luscs, ranging in size from a few millimeters to tens of centimeters, depending on
its age. Its general body features resemble a snail, though like land slugs, it has
no shell (see photographs in %Ipitsos14 2

,14
3 14 5 14 7 ). The animal exhibits a relatively

large repertoire of behaviorsJ4 ] including, righting when turned upside down, defen-
sive withdrawal, mating, egg-laying, feeding and a variety of other mouth-related
behaviors involving the mouth, lips, jaws. and radula (a structure analogous to
a tongue). Feeding behavior usually has dominance over the other behaviors. For
example. animals normally withdraw from tactile stimuli applied to their head re-
gions. but in the presence of food. withdrawal responses are suppressed in feeding-
motivated animals."1-15 The most obvious feature of the feeding behavior is the
rapid bite-strike response in which the entire jaw structures comprising the pro-
boscis are rapidly thrust out to bite at a food object and then rapidly withdrawn.
Feeding also consists of bite-ingestion movements in which food is grasped and then
sequentially drawn into the mouth cavity largely through cyclical inward and out-
ward movements of the radula and coordinated movements of the anterior regions
of the jaws and mouth. A third stage of feeding consists of swallowing movements
in which food is passed from the buccal cavity through the esophagus and then into
the stomach. The bite-ingestion and swallow components of feeding 44 are excel-
lent for neurophysiological work because of their oscillatory characteristics, much
as might happen in humans during opening and closing of the jaws and related
movements of the Iongue. Because of the sequence of oscillations. the behavior per-
sists and is amenable to analysis, whereas single-shot behaviors such as withdrawal
are more difficult to analyze. However, as in humans, the number of cycles that
the animal mnay exhibit during a single bout of bite-ingestioii and swallow is often
short and possibly' nonstationary in its temporal characteristic, which, as discussed
below, pose difficult problems in studies aimed at understanding the dynamics of
t ie behavior.

The jaws. radula. mouth, and lips of the animal generate many different and
variable behaviors.'-' These include several components of feeding, regurgitation,
defensive biting, among others. 3 4 `124

,125,1
26

,12
7
.s The animal also exhibits self- and

inter-animal gill grooming,148 but we presently' have no way to evoke gill-grooming
behavior reliably. liowever, of all its behaviors, inter-animal gill-grooming is par-
ticularly interesting because Pleurobranchaea is cannibalistic, raising questions into

[]The ensuing discussion also relies on the term "'behavior," and identifies a number of behaviors
within the repertoire of what the animal can do. For the moment, we use "behavior" to refer
specifically to a definable response of the animal, or generically to some unspecified but potentially
identifiable response. We shall see by subsection 3.7. however, that the definition of behavior, of
behavioral repertoire, and of behaviorally multibehavioral or multifunctional systems (ones that
can produce different behaviors using the same sets of neurons) needs to be revised to take into
account the consequences of variation in "contexts" of neuronal group action.
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the mechanisms that turn carnivorous feeding mouth, radula, and jaw movements
into cleaning movements.

2.2 NEUROPHYSIOLOGY

2.2.1 KEY FEATURES OF ALL MOUTH-RELATED BEHAVIORS CAN BE EXAMINED
THROUGH A SMALL POPULATION OF NEURONS, THE BCNS The cerebropleural
ganglion ("brain") of Pleurobranchaea innervates the mouth and anterior head re-
gions, whereas the buccal ganglion innervates the muscles that move the jaws and
radula. Thus, coordination of buccal-oral behaviors, namely ones that involve both
the buccal structures and the mouth and lips, must happen through these ganglia.

The only way this can happen is through the buccal-cerebral neurons (BCNs),
of which there are approximately 15-20 in each half of the two buccal hemiganglia.
The BCNs are unique because they are: (1) the only cells in the buccal ganglion
that project to the brain, except for two bilaterally paired giant neurons whose
function is presently unknown, and (2) that are either directly involved in generating
the central pattern generator for the buccal behaviors or intimately involved in
controlling it.3334' 13 0 There may be other oscillators located in the brain, but by
comparison to the effect of the BCN oscillator, other oscillators have weak effects.
The BCNs and the two giant cells are the only sources of information to the brain
about processes in the buccal ganglion. All of the behaviors involving movements
of the mouth and lips in coordination with the tongue and jaws must act through
BCNs, and since the BCNs are part of the central pattern generator, they do more
than perform coordination of the different motor centers.

'though the various mouth-related behaviors may involve thousands of neu-
-;is, key features of the information required to generate these behaviors may be

obtained from much smaller subsets of neurons consisting primarily of the BCNs
and some of the neurons with which they interconnect. Thus, the BCNs acting in-
dividually and as a group are multifunctional because they must generate activity
pertaining to multiple behaviors.

2.2.2 CONNECTIVITY OF THE BCNS Figure 1 summarizes the BCN connections.
The evidence for these connections has been described in several publica-
tions. 32'33' 34' 139 The present evidence indicates that they connect with one another
primarily polysynaptically, as indicated by the interneurons in Figure 1; however,
many of these polysynaptic connections may be through other BCNs. In a few cases
there may be mutual inhibitory connections between the BCNs, but the exact con-
nectivity, if it can be defined, remains for further study. As indicated schematically
in Figure 1, many BCNs converge onto the same target motor neurons, and in-
dividual BCNs diverge onto different motor neurons. In turn, the motor neurons
neurons feed back to the BCNs that drive them. An identified group of neurons
in the brain, the paracerebral neurons (PCNs), converge onto the BCNs, and the
BCNs feed back to the PCNs. 65 ,66' 1 39
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FIGURE 1 Cartoon showing central features of converging and diverging connections
in Pleurobranchaea nervous system. BCN: buccal-cerebral neurons. I: interneuron. M:
Motor neuron. PCN: Paracerebral neuron. Size of each of these pools of neurons is
about 10 to 20 units each. There are many more motor neuron pools, one for (cont'd.)
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FIGURE 1 (cont'd.) for each motor root; some cells send axons out multiple roots. RI:
motor root that innervates muscles for opening jaws. R3: motor root for closing jaws.
Motor roots of brain are not shown. For clarity of presentation, the BON-motor neuron
connections are shown on the left, and BCN-PON connections are shown on the right.
Reprinted with permission from Brain Res. Bull. 21 (1988): 529-538.

The actual biological network is much larger and more interconnected than
shown in Figure 1. For example, there are different pools of neurons that send axons
out of the brain through the various motor roots, of which there are approximately
a dozen on each side of the brain, though some motor neurons send axons out
different roots. Additionally, it is necessary to consider that there are numerous
pools of interneurons. Thus, the number of converging and diverging connections in
the brain and buccal ganglion is quite large. Moreover, just as there are interactions
between the brain and buccal ganglion, there are interconnections between the brain
and other ganglia. Therefore, the extended network consisting of neurons affecting
the BCNs, and ones that the BCNs affect, involves hundreds of neurons.

What we hope to achieve in our present line of work is to add neuron pools
to the core model shown in Figure 1. We want especially to obtain the temporal
relationships in the firi•g of as many of the neurons as possible, partly to use
the data to reassess the conclusions we have already reached, and partly to use it
to obtain some insight into how such large numbers of neurons interact with one
another. The time of firing of all BCNs and PCNs is being extracted from multiple
recordings conducted simultaneously at different extracellular sites along the nerves
that connect the brain and buccal ganglia (the cerebro-buccal connectives, CBCs).
Since activity occurs in both directions in the CBC, the multiple recording sites
allows us to determine the direction of propagation of firing in different nerve fibers.
and thereby to distinguish between the BCNs and other neurons. It is only a matter
of extended labor to include the time of firing of motor neurons in the different
motor roots.

The point of all of this work, however, is not to obtain a complete network,
but to use the data to assure that our computer simulations of different model
assumptions will provide activity that reflects the activity in the biological system.
A particularly important aspect of this work will be to obtain an indication of the
types of variations and motor pattern blending that the system generates.

Owing to similarities in their gross neuroanatomical features, which distribute
differ"'at functions to the buccal ganglion and to the brain, the principles obtained
in Pleurobranchaea may hold in many other snails and slugs. Moreover, it is likely,
though not demonstrated sufficiently, that neurons analogous to the BCNs in Pleu-
robranchaea may have similar functions in all snails and slugs. But it is not clear
presently whether other snails and slugs generate as many mouth-related behav-
iors as Pleuro branchaea, and whether the behaviors in these other animals are as
variable.
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3. DISTRIBUTED FUNCTION, MULTIFUNCTIONALITY, AND
VARIATION
3.1 RATIONALE FOR CHANGE IN CONCEPTUAL FRAMEWORK: SINGLE
CELLS TO CONTEXTUAL GROUPS

Our initial aim for studying this "simple" sea slug was to understand the cellu-
lar basis of learning. '[he many control experiments in the studies of Mpitsos and
Collins142 and Mpitsos. Collins. and McClellan143 were the first to demonstrate that
sea slugs are capable of Pavlovian and avoidance associative learning, and even ear-
lier work, though not as extensively controlled, promised that associative learning
could be examined in isolated nervous systems.145 However, work begun in the mid
1970s closely exanmined the motor patterns and behaviors, and showed that net-
works are multifunctional in being capable not only of generating different behaviors
and that similar motor patterns can yield different behaviors. 3 2' 124"125 ' 126' 12 7 ,

13 8
,
13 9

More importantly the motor patterns of different behaviors often blend with one
another and the underlying motor patterns of neural and muscular activity are
quite variable 32"138 ,1

39 As discussed below, rather than a definable reflex system, it
seemed possible that networks of neurons work by flexible contexts of action. The
variations in the contexts might involve linear regroupings or might arise from non-
linearities that cause rapid shifts or bifurcations in the patterns of activity generated
by the network. It became apparent that attempts to attribute specific function to a
given neuron, or to locate the engram of a learned behavior to a particular synapse
could fail.

Consequently, we had to backtrack, to reassess how it is that even innate or
"unlearned" motor patterns arise in such systems before we could address the prob-
lem of how newly learned information is incorporated into the network. Although
we continued to conduct learning studies after the observations made in the mid to
late 1970s, our rationale for doing them has not been to find the locus of learning
at specific synapses, but to determine whether learning could actually be identified
in the responses of reduced preparations. 138' 140 ' 141 Additionally, given the indica-
tion that information may be distributed over many neurons it was necessary to
develop the technology for identifying populations of neurons that are involved in
specific aspects of learning among which we could examine how learning affected
cooperative actions among neurons in the population.147' 150 '1 51' 174

The idea of cooperativity, which Freeman and coworkers 172 have used to ad-
vantage in their studies of rabbit olfactory bulb, resembles what we refer to as
",'conlezxt" in neuronal group function. Much of the discussion in this paper will
attempt to present our understanding of functional contexts. Early in the devel-
opment of the idea of command neurons (cells that evoke stereotypic behaviors),
Davis and Kennedy 42' 43 showed that each command neuron of the lobster swim-
meret system produces characteristically different effects and selectively controls
different motor neurons, indicating that the command process arises from group
action in which each command neuron performs specific subtasks of the command
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process and activates a particular set of motor neurons. Later work, such as the find-

ing in Pleurobranchaea that command neurons receive feedback connections from
the motor network that they drive,615 blurred functional distinctions that may be

attributed to single neurons because function seemed to be shared. Davis41 used the
term "consensus" to refer to the emergent actions that might arise among groups

of interacting neurons. In studies on locust walking, Kien 90 ,92 used "consensus" to
refer to variable activity in ensembles of neurons. Our thinking on the ability of
groups of neurons to act contextually includes variation in the effects produced by

individual neurons. by the group as a whole, and in the neurons that constitute

the group. For the present discussion we use the idea of "contexts" interchangeably
with "consensus," partly because we, too, are inclined to believe that its meaning of
"1all or most" is descriptive of what may often take place in the number of neurons
that become active during normal behavior.

Although there are similarities between our use of the "contexts/consensus"

and Davis' and Kien's use of "consensus." there are also some important differ-
ences which we shall address. Our definition relies on many factors other than the

number of neurons that become active. Therefore, we hold off a definition, which is
given in subsection 3.8, until have first presented behavioral examples, and provided
discussions of principles relating to variation, dynamics, and nonlinear function.

3.2 CONTEXT OF NEURONAL GROUP ACTION: INFERENCES FROM
BEHAVIORAL CHOICE

The following example may help to explain our use of the term "consensus" (or
"'context"): One of the original purposes for studying Pleurobranchaea was to ex-

amine how animals "choose" to perform a particular behavior when confronted
simultaneously by many stimuli that often require conflicting responses, as might

occur in the natural environment.4 4 For example, turning an animal upside down
evokes righting behavior having a definable duration. Presenting food to the ani-

mal produces several components of feeding behavior at definable thresholds. When
turning the animal upside down and presenting food simultaneously, righting times

significantly increase, but feeding thresholds remain constant. By such simultaneous

presentations of different stimuli to evoke pairs of behaviors, it is possible to define
a behavioral hierarchy, 45 and to view the process of establishing the hierarchy as a

reflex system where one behavior inhibits another.' 0 0

It is necessary, however, to go one step further. Early studies on behavioral
"choice" 148 indicated that some behaviors seem to blend into one another, as Kirsti
Bellman18 was to show later in lizards. In Pleurobranchaea, for example, the anterior
portion of the foot may start to twist in order to right, but, at the same time. it may
begin to cup around the descending solution of the food stimulus. The anterior foot

appears to be attempting to perform two contradictory behaviors at the same time.
Even when righting behavior starts, it is slowed because the foot's motor-system is

still receiving conflicting activities, one for righting and one for feeding. We do not
deny that reflexes involving inhibition can be found, but doing that alone places
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one's concepts on the side of the razor's edge in which behavior, and the underlying
neurointegrations, are viewed as set and repeatedly definable structures. The im-
portant issue to us is the process of forming the behavioral "'choice" during the time
that the animal is presented multiple stimuli rather than a stereotyped behavioral
hierarchy. The two approaches speak about the same behaviors but give different
explanations. The contextual approach views behavior as arising fluidity among
many different and blendable behaviors. The reflex approach views the animal as
a generator of a set. of fixed-action patterns (FAPs: e.g., Gillettet) 4 ), each relating
to definable and repeatedly identifiable responses in the animal. The definition of
behavioral hierarchy forces one to think of behaving animals as concatenations of
reflexes or FAPs that. are repeatedly definable. In the extreme situation in which an
inverted animal lies motionless, neither feeding nor righting, the definition of behav-
ioral hierarchy would lead one to develop experiments showing inhibition between
feeding and righting sensory-motor systems, as shown for the interaction between
feeding and withdrawal."' 0 It would also lead one to identify a particular locus in
the nervous system at which such inhibition takes place. The variability of activity
in Pleurobranchaea, and the high degree of converging and diverging connections
in its nervous system lead us to believe that such localization of mechanism may
be misleading. By contrast, when taking these factors into account, one's focus is
directed to dynamically shifting contexts of activity in which the identity and loca-
tion of the underlying mechanism for a behavior is not fixed, just as the behavior
may not be fixed and always distinguishable from others. One is more apt to think
of variably emerging networks rather than "switchboard" reflexes.

Thus, although the definition of behavioral hierarchy is useful for categoriza-
tion, and although it is defined using the behavioral choice paradigm, it dangerously
excludes the dynamics within choice-making processes. To be sure, reflex actions
are indications of a process, but the reflex approach leads one to examine the
structure of the network itself whereas an approach that deals with the dynamics
of interactions leads one to examine principles of interaction from which networks
emerge not only variably but also nonlinearly, as we shall try to illustrate in Section
6, when dealing with reductionism, and in Section 8 when dealing with computer
simulations. Inhibitory interactions between motor systems may be used by both
explanations, but the dynamical app'oach uses inhibition either as a potential ex-
planation that may or may not actually take place, or as a participating variable
in a system that expresses the dynamics. In either of these non-reflex explanations,
the role of inhibition may not be discernible from the structure of the network it-
self, though dynamical explanations must also account for conditions that actually
express reflexes.

3.3 CONTEXT OF ACTION IN THE BUCCAL-ORAL SYSTEM

The buccal-oral system of Pleurobranchaea, consisting of the lips, mouth, radula,
and jaws, seems to magnify variation and behavioral blending because. as noted
above, it is capable of generating many different behaviors and variants within
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individual behaviors. Moreover, blending happens among the various mouth-related
behaviors themselves, as well as with behaviors produced by other motor systems.
A number of studies have provided criteria for identifying motor patterns relating to
particular buccal-oral behaviors. McClellan12 4 ,126,127' 12 8 and Croll and Davis3839

have established specific motor-pattern differences in electrical recordings made
from muscles and nerves to distinguish between feeding, regurgitation, and rejection
behaviors, but even McClellan's studies demonstrated that different behaviors can
be generated by similar motor patterns.

Having observed considerable motor-pattern variations, Mpitsos and
Cohan138 14°,14"1 devised a series of associative learning experiments to determine
whether a learned response persisted in even minimally dissected animals. The re-
sults clearly showed that the behaviors of the undissected and dissected, behaving
animals were identical, as determined by direct observation of what the animal
did in response to the applied experimental and control stimuli that were used
in training. However, when examining the electromyographic data alone, obtained
simultaneously while observing the behaviors, it was not possible to identify con-
sistent differences in the firing patterns of muscles during feeding, regurgitation,
and rejection. The information had to reside within these patterns, but the iifor-
mation itself could not be read simply by examining the temporal orchestration
of activity in the recorded-motor patterns. An alternative explanation is that the
information resides in the dynamics of the neuromuscular system as a whole, i.e., in
the combination of interactions between the motor output, in the nonlinear loading
presented by the muscles and mouth and jaw structures, and in the effect of sensory
feedback to the central nervous systems. Such systems may have qualities similar to
damped-driven oscillators whose dynamics are sensitive to changes in parameter-
constants that control the effects of different variables (e.g., see the description of
the Duffing oscillator in Thompson"S). Not inconsistent with this is that the animal
can perform a given behavioral effect successfully using combination of patterns. In
neural activity, it may be sufficient to have reached an approximating and variable
"consensus" or "context" of action rather than requiring an explicit stereotyped
pattern.

The neural sources of some of this variation were identified in studies of iso-
lated nervous systems that were used in order to remove the influence of sensory
perturbations. For example, neural patterns reemerge even when BCNs that were
initially responsible for generating patterned activity are reversibly removed from
the coactive networks (Figure 5 in Mpitsos' 3 9 ), showing that different combinations
of neurons generate similar responses. Similarly, the firing of some BCNs shift vari-
ably between completely opposite phases of the cycle of opening and closing of the
jaws (Figure 16 in Mpitsos139). Graded intermediates may occur as the nervous sys-
tem generates patterns of rhythmic activity and spontaneously shifts into another
pattern.

Our view is that the intermediate and variable forms of activity give crucial
information about integrative mechanisms. Variations that occur within group ac-
tion must arise from variations at the level of individual neurons. To present these
ideas, the next two subsections discuss "attractors" and "attracting states," and
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the role that different forms of variation and error have in the response properties
of biological systems.

3.4 DEFINITIONS: MODES OF COOPERATIVITY

3.4.1 ATTRACTORS AS DISSIPATIVE STRUCTURES An intuitive definition of at-
tractor may be given by examining the property of attraction. Suppose for the
moment that we are dealing with a process governed by three variables. The state
of the system at any given time is represented by the values of the these variables.
The progression of these values over time define the parameter state space of the
activity of the system. Plots of these variables, one variable in each coordinate of
three-dimensional space, defines the phase space. The flow or trajectory from one
point to another provides a view of the phase portrait of the dynamics of the activ-
ity. For continuous periodic activity, the trajectory is a closed loop. A brief external
perturbation, applied to one or any combination of the variables, will move the state
of the system away from the closed loop. If the trajectory then collapses asymptot-
ically back toward the closed loop, the system may be considered to be governed
by an attractor. The set of all possible perturbations, and subsequent dissipative
responses shown by the asymptotic recovery, deine the inset to the attractor or
its basin of attractz on. In the case of periodic activity the attractor is a limit cycle.
The activity could also be generated by chaotic attractors whose trajectories are not
represented by a limit set either before or after perturbations, but by an attracting
set. An indication of this set may be viewed through the geometry of the topolog-
ical manifold in which the trajectories mix. Examples of the mixing geometry of
attractors in Pleurobranchaea responses and model systems in our own work may
be found in Mpitsos137'144 and Andrade et al.,6 respectively. Though we have used
phase portraits to obtain an intuitive view of attractors, a single dynamical system
may have phase portraits containing multiple, competing attractors.18 3

The above-cited work from our laboratory also discusses a variety of geomet-
rical and computational tools that may be used to determine whether the activity
is generated by limit-cycle or chaotic attractors. In either case, the most useful for
determining whether the system is generated by an attractor is to conduct the per-
turbation experiments described above, which a major focus of our present efforts
in both biological and model systems. Much experimental work needs to be done in
this way, but it is quite likely that attractors underlie much biological function, as
shown, for example, by perturbation experiments designed to test for resetting of
the phase of oscillatory activity (an example of an externally applied current pulses
to one of the BCNs in Pleurobranchaea is shown in Figure 3 in Mpitsos 139).



84 George J. Mpitsos and Seppo Soinila

3.4.2 LOW DIMENSIONALITY IN HIGH-DIMENSIONAL SYSTEMS As the -.vstern
evolves to dissipate perturbations. one would observe that the ensemble of points
in state space decreases over time. i.e.. that there is volume contraction. Volume
contraction simplifies the topology of the structure defined by the trajectories, and
as pointed out by Thompson and Stewart.,1 8 "This can often mean that a complex
dynamical system with even infinite-dimcnsional phase space. .can settle to final
behavior in a subspace of only a few dimensions" (p. 1).

This phenomenon is particularly important in biological systems because they
are inherently high dimensional. A single cell in the visual cortex of the mouse.
for example, receives inputs from approximately 5000 other cells.-' each of •hich
may be a controlling variable. Numerical analyses of spontaneous cortical neuron
activity,158 of EEGs in olfactory bulb,1 72 cortex,4'' 17' and of motor patterns in
Pleurobranchaea,137 '144 all indicate that the activity is generated by relatively few
variables. One of the tasks facing work it animals such as Pleurobranchaca, and
of correlative computer simulations, is to identify the variables, out of the many
available, that become active in low-dimensional activity, and to identify the con-
ditions among these variables that permit low dimensionality to arise. Part of the
goal of our computer simulation is to define minimal structures that permit the gen-
eration of different types of attractors, and to determine how different attractors
might arise at different times within the same high-dimensional space. An interest-
ing possibility is that what determines which sub-space is occupied may simply be
a matter of what attractor becomes established first. In a sense, there may be a
type of competition such that the same behavior at some different times may be
generated by a somewhat different attractors arising trom variable subsets of the
available high-dimensional possibilities.

3.4.3 TURBULENCE, "ATTRACTING STATES, AND SELF-ORGANIZING CRITICALITY"
Given weak connections, which are common in the Pleurobranchaea nervous
system,' 39 it is not inconceivable that different limit-cycle and chaotic attractors
may emerge simultaneously within the same network, moving and blending in space
and time, and giving rise to the blending seen in whole-animal behavior" and in
some motor patterns.'3 9 These conditions may provide the opportunity for analogs
of turbulence to occur.133 As discussMd in the computer studies described in Section
8, we believe that large groups of neurons need not all act in a coordinated fash-
ion, particularly when a large number of relatively weak synapses are distributed
throughout the network. The statistical properties of the network and the effect of
weak coupling may permit conditions under which different subsets of the extended
network are able to begin acting cooperatively within themselves. Yet owing to
extensive convergence and divergence of the underlying connectivity, one subset of
neurons may influence the coordinated firing of other subsets. In this way, small
foci of coordinated firing may move spatially, blend, or separate in to different foci,
much as one might envision of vortices in hydrodynamic turbulence. Instructive
examples of such phenomena in physical models have been presented in laboratory
simulation177 and computer simulations of the formation of the large red spot of
Jupiter.11 7 Videotapes showing the evolution of vortices in the hydrodynamic model
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and in the computer simulations were seminal in solidifying our own intiition about
what may happen in neural systems."is In considering the possibility of turbulence
in neural systems, our own feeling is that the definition of "attractor" in such cases
may not be as suitable as in more definable spatio-temporal structures. We prefer
to use the term "attractzng states."

ALtracting states may have some resemblance to mechanisms of self-organzzzng
critcalzty (SOC) proposed by Bak and coworkers. 10.11.12.1531,a1Z57 The ideas have-
been applied to models of turbulence in forest fires14 and the production of un-
predictable avalanches that occur when attempting to build mounds of sand by
piling one grain of sand over another.' 3 Local effects are deterministic and easily
observed, but the global effects are not predictable from such local information,
and partly for these reasons, systems governed by SOC seem to be acting near
the "boarder of chaos." 10 To our knowledge, SOC has not been applied to nervous
systems. We envision that conditions that would allow SOC to take place would
retain the deterministic character of monosynaptic actions between neurons, but
given weak interactions, would also permit, statistical or random spatio-temporal
long-range effects through polysynaptic action.

3.5 CHAOS AND OTHER-FORMS OF VARIATION

3.5.1 BIFURCATION PARAMETERS AND CHAOS We shall examine bifurcation pa-
rameters in more detail in a Section 8. It is sufficient to state briefly that they are
parameter constants that control how a system (or its defining set of equations)
expresses its nonlinear characteristics. When the system is far from critical points.
changes in bifurcation constants have relatively little effect on the dynamics of the
system. At or near critical points, small changes in bifurcation parameters produce
rapid changes (bifurcations) in the response of the system. Within certain ranges in
the values of these parameters, the system may exhibit rapid shifts between different
types of periodic activity and chaos as the parameter is successively changed.'

The simplest definition of chaos is that it is completely deterministic at each
step of its temporal evolution, yet over the long term, its response is not predictable.
An example we shall discuss later is the logistic equation, given by Y,,+ = /?(1 -
X,)V,, where I? is the bifurcation constant. This equation has no random factor in
it, yet, for certain values of R, it is not possible to predict the evolution of the time
series several iterations into the future given some initial starting value. Despite its
long-term equivalence to random noise, the organized geometry in plots of -X, versus
X,,+, clearly show the deterministic, non-random character of chaos.1 23.136,la

It is difficult to prove that biological systems generate chaotic attractors, owing
primarily to their short-lived and apparently nonstationary behavior.133 However,
computer simulations have clearly shown that Hodgkin-Huxley membranes2 9,30 and
the parabolic burster neuron, R 15 , in the abdominal ganglion of Aplysla2 5 may
be capable of bifurcating into a broad spectirum of simple periodic and chaotic
activity. Our pre, ious studies on the implications of attractors and variation, and
of their implication in the generation of contexts of interrelated firing in groups of
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neurons, have been discussed in behavioral and neurophysiological studies. '1339,146

And there is some evidence for chaos in the responses of individual BCNs and
motor neurons in Pleurobranchaea.13 7,144 Other activity of single neurons is more
consistent with noisy limit cycles.1 3 5 '148

The lessons to be gained from chaos are: (1) as illustrated by the logistic equa-
tion, variations arising from chaos are not "noise" superimposed on the information-
carrying signal; they themselves represent the information. (2) The information in
chaotic systems is always increasing with respect to information available at a given
initial time. This is to say that if chaos is to represent behavior, it is necessary to
use the long-term phase-space geometry of the attractor driving the system to gain
a view of what the behavior is like. Given equal noise-free conditions, the behav-
ior represented by periodic activity can be defined in a single orbit. (3) Periodic
or limit-cycle activity dissipates perturbations differently than chaotic systems. As
pointed out by Conrad,3" limit cycles in biological motor systems dissipate pertur-
bations in ways equivalent to heat loss through the body structures innervated by
the neural system in question, whereas chaotic attractors dissipate the perturba-
tions by generating new variations. Limit-cycle attractors always return to doing
behaviors in the same stereotyped ways. Chaotic attractors generate new variations
naturally in response to perturbations because their sensitivity to initial conditions
always forces them to generate the behaviors in different ways, which is to say
that behaviors are always different in chaotic systems. (4) Mpitsos and Burton 136

have shown that chaotic discrete processes, much as might occur in spike trains
communicating between networks, allow simple networks to perform complicated
tasks that would require considerably more complex networks to perform if the
signals were generated by nonchaotic discrete processes or by continuous periodic
or continuous chaotic processes. (5) It was also shown that the inherent variations
of chaotic discrete processes permits networks that receive such signals to opti-
mize their responses either in transmitting the signal one-for-one or in performing
computations on them. That is, the deterministic character of chaotic discrete pro-
cesses allows them to convey information, yet their long-term randomness provides
sufficient variation to allow the responding network to learn rapidly. As we shall
discuss below, random noise may be used advantageously to perform such opti-
mizations. But random noise has th; disadvantage of being high dimensional, and
high-dimensional processes are difficult to generate because they must represent
many degrees of freedom. Chaotic processes are long-term equivalent to random
noise, yet the expression of chaos can be easily controlled using low-dimensional
systems and simple adjustments to a single control parameter, as in the logistic
equation. In multibehavioral systems such as Pleurobranchaea, the combined infor-
mational content and variation of chaos may be useful in accessing the different
response possibilities. 136
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3.5.2 BIFURCATION-INDUCED VARIATIONS Another form of low-dimensional varia-
tion arises when systems approach bifurcation points. An intuitive understanding
for this may be given by recalling the above discussion on the demonstration of
attractors lying in three-dimensional space, and using this example to understand
what happens to Lyapunov exponents as the system approaches bifurcation points.
In a system governed by three variables, there are three exponents. (A useful dis-
cussion of Lyapunov exponents and numerical methods for estimating them are
presented in Woolf 19 2 ). A negative Lyapunov exponent indicates that there is con-
traction in a given direction in phase space. If all three exponents were negative,
the flow of points in phase space would collapse in all directions into a single point.
For continuous, bounded systems not at a fixed point, at which the system remains
at equilibrium at some non-changing parameter state (see definition in Thompson
and Stewart,' 8 3 p. 194), Haken 73 has shown that one of the exponents must be zero.
In a simple limit cycle governed by three variables, the remaining exponents must
be negative. The negativity in the sum of the exponents assures that there is an
overall contraction in the flow of points in phase space to keep the system bounded.
The summed negativity also assures that the system will dissipate perturbations if
they are not so large as to push the state beyond the attractor's basin of attrac-
tion. Bifurcations into chaos introduce a positive exponent, but retain the criteria
of one zero-valued exponet and that the sum of the exponents be negative. The
positive exponent shows that the state of the system in the corresponding dimen-
sion of phase space is always expanding. Having a zero-valued Lyapunov exponent
indicates that the growth in phase space is neither contracting nor expanding over
time. Thus, the rate of growth of a three-variablel-5 system in phase space is given
by 2 (A1+A 2 +A3 )t, where A,, A2 , and A3 are the corresponding Lyapunov exponents for
growth in each direction of phase space, and t is time. Since the exponential change
is given as base 2, the exponents express the rate of change of growth in phase
space as information in bits per second. Thus limit cycles lose information as they
evolve with respect to some initial state,whereas chaotic systems gain information.

[S1The need for three variables in continuous systems that can generate chaos may be viewed
intuitively by examining the flow of trajectories in phase space and their ability to mix as they
course through the attractor surface; a typical trajectory will visit every vacinity. Evidence for
mixing can be obtained by cutting a Poincare section through the phase portrait and noting the
interrelated positions of the crossings of the trajectory through the section.' 8 3 If one places a
string on a flat surface defined by two variables, it is possible to conform the shape of the string
to flow to a fixed point, to form a variety of self-similar spirals," 8', or to connect the two ends of
the string to form limit cycles (also see a discussion of the Jordan curve theorem and the theorem
of Poincare-Bendixon in Hofbauer and Sigmund 7 9 ). However, it is not possible to have nearby
lengths of the string diverge from one another and eventually mix in their interrelated positions
without causing the string to cross on itself somewhere unless the trajectories flow into a third
dimension and then fold back onto a thickened plane; i.e., however imperceptible, there must be
a thickness to the surface of the attractor composed of countless layers arising from continuous
stretching and folding which brings distant trajectories close together. Discrete processes, on the
other hand, can generate chaos in a single dimension, as shown by the logistic equation.
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As a system approaches bifurcation points, some of the Lyapunov exponents
approach zero values, as we show herein for the catalytic network model of An-
drade et al.6 , 4 s Setting the bifurcation parameter. p, to a value of .02, generates a
one-period limit cycle far from a bifurcation point, and Al, A,), and A,, have values.
respectively, of 0. -2.8, and -43. Adjusting p to .0125, well past the bifurcation into
a two-period limit cycle, the exponents have values of 0. -3.6, and -43. However.
setting p to .0149, which is near the bifurcation point, the exponents are 0, -.05.
and -46; A2 vanishes. Thus, as the system approaches bifurcation points, a greater
number of Lyapunov exponents approach zero than when the system is farther
away from these points. Perturbations in directions of phase space governed by
exponents having small negative values would be dissipated slowly. Even in model
systems having no extraneous injected noise, transient variations are often difficult
to remove when attempting to locate bifurcation points.

Kelsc, Schlultz, and Sch6ners9 have given the term "critical fluctuations" to
the variations observed in human finger movements during phase transitions, or.
in our terminology, at critical bifurcation conditions. We have observed similar
fluctuations in our own studies using sinusoidal current to drive individual neurons
in Pleurobranchaea and Aplysia.67 Moreover, since the Pleurobranchaea buccal-oral
system appears to sit metastably near transitions into different patterns of activity
(as shown, for example, by frequent spontaneous transitions of activity in isolated
nervous systems; e.g., see Mpitsos' 4 4 ), we should expect to see variations in activity
simply because of the tendency of the system to pass through bifurcation conditions.
In model networks, it is possible to generate activity in the system long enough to
get rid of transients. But biological systems, which generally do not have such long-
term luxury, should exhibit considerable variation simply because of bifurcation
effects, unless they lie far from critical points.

A rather interesting problem of bifurcation-induced variations occurs in regions
of the controlling parameter that cause chaos. Such regions are filled with sub-
regions that lead to periodic activity, as can easily be demonstrated by examining
the bifurcation parameter of the logistic equation at expanded scales."8 3 Therefore,
small changes in a control parameter may actually lead to rapid shifts between chaos
and periodicity, with each state being accompanied by transient variations. Clearly,
there is a need to understand how biological systems cope with the sensitivity in
the adjustment of bifurcation parameters and with the different forms of variations
that arise from such adjustments. One possibility may be that the large number of
converging and diverging connections among neurons may buffer unwanted bifur-
cation conditions by lifting the controlling effect from residing in single neuron or
a few of them and distributing it over a large number of neurons. In this way, the
bifurcation conditions emerge from group action, though individual neurons may
exhibit near critical behavior. This may also be a reason for the observation of the
wide distribution and convergence of neurotransmitters and modulators.
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3.5.3 RANDOM NOISE Other variability in Pleurobranchaea seems to be high-
dimensional, or even random, as shown by the response of a single neuron in Fig-
ure 1 of Mpitsos135 and by the analysis of electromyograms in Mpitsos.' 3m It has
long been known that a little random noise may help systems to avoid local min-
ima which may be defined for the present purposes as non-optimal responses (see
Figure 8 in Burton and Mpitsos 23 for a diagrammatic demonstration of local min-
ima). The physicochemical properties of DNA provide an example of one use of
noise in biological studies.49 Heating solutions of DNA (injecting noise into the
system) breaks the two complementary strands apart. If the solution is cooled too
rapidly, the original complementary bonds between base pairs is not completely
restored; i.e., the system has fallen into a local minimum. If the solution is cooled
slowly, the strands recombine optimally, forming the absolute minimum. Thus, the
terms "local minima" and "absolute minimum" may be used to refer to number of
characteristics, such as information storage. reconstruction of an original template.
and energy level. Such processes of noise control are time dependent, and usually
control noise by decreasing it exponentially. The method is referred to as simulated
annealing. Kirkpatrick, Gelatt, and Becchi93 discuss simulated annealing and apply
it to several optimization problems, including the placement of computer chips on
a circuit board, in which the goal is to minimize wire length and bends, and the
traveling salesman problem, in which the goal is to minimize the distance traveled
between cities if each city is visited only once. Simulated annealing is time depen-
dent because it requires the noise in the system to have a decay rate, and once the
noise has died out, it is necessary to introduce noise into the system again in order
for it to be ready to respond to a new situation. Biological systems are generally
event dependent, not time dependent. It may be difficult or impossible to determine
in advance when the next challenge to survival will occur or what it will be, and
when to re-inject noise into the system. Once a challenge has presented itself, there
may not be enough time to adjust the rate of decay of noise.

As a step in determining how random noise might be used in adaptive sys-
tems, Burton and Mpitsos"3 devised time-independent noise algorithms (TINA)
that control noise through the response of the system, as would occur in natu-
ral environments, rather than through predefined time schedules. To demonstrate
the algorithm, Burton and Mpitsos ured simple nonbiological neural networks that
were required to learn to transmit or manipulate chaotic input signals, much as
might occur if networks communicated with one another with chaotic spike trains.
Networks were trained using an error-backpropagation algorithm.166 Random noise
was added to the learning-induced changes in synaptic weights and thresholds, but
the level of the injected noise was adjusted on the basis of the amount of error gen-
erated each time the network responded to an input event. By such adjustments
it was possible to avoid local minima and speed the process of reaching maximal
levels of learning.



90 George J. Mpitsos and Seppo Soinila

3.5.4 VARIATION-DEPENDENT OPTIMIZATION IN MULTIFUNCTIONAL SYSTEMS
Thus, random noise, chaos, and possibly variations arising from bifurcation con-
ditions may provide conditions leading to two different methods of optimizations.
The effect of chaotic discrete processes was shown under conditions in which chaos
would act as a transmitter of information between networks, whereas the effect of
noise was shown when it was added to changes in synaptic weights and thresholds
during learning when the network had to respond to the chaotic signal. However,
chaos is only short-term deterministic. The long-term statistics of chaotic discrete
processes, as might occur in spike trains, are identical to random noise. For systems
such as Pleurobranchaea or the mammalian olfactory bulb' 72 that are multifunc-
tional or contain multiple information within the same set of connections, variations
that allow the system to search for one of many attractors or attracting states may
be essential.

The three types of variation mentioned above involve different search strategies
and control methods. Chaos has a deterministic search strategy and can be con-
trolled through bifurcation parameters in membrane dynamics, 25,29 synaptic releasc
(see the interesting suggestion in Kriebel et al.'0 1 ) and, as we shall discuss in Section
8, in synaptic strengths. Neural systems may be able to approximate randomness
simply by using weak synapses and by taking advantage of the large number of
connections between cells. For example, connections between 10-100 neurons may
provide sufficient degrees of freedom to approximate the high dimensionality of
Gaussian noise. A number of activity-dependent changes in synaptic strengths or
in the probability of transmitter release99 might provide methods to control noise
naturally and in time-independent ways. Some of the "*noise" or variations that
occur near bifurcation points are deterministic and self-controlled because they are
transients that die out asymptotically as the activity evolves over time. Decreases in
the value of Lyapunov exponents near bifurcation points would also allow random
effects to become amplified, but as the system passes through bifurcation, both the
transient effects and random variations diminish.

Variation, not chaos. The point, then, in thinking about adaptive mechanisms
is to understand the use of a spectrum of variational types. Owing to its interesting
phase-space geometry and its long-term unpredictability, chaos has received much
press. The important issue, howeve?, is not chaos, but variation and its control,
and the way variation affects the ability of the system to access different dynamical
states. The neural architectures that support the generation of these variabilities
and ones that lead to control are unexplored. We provide suggestions in Section 8.

3.6 ERROR AS AN INTEGRATIVE PRINCIPLE

A system that has evolved to meet only one adaptive need can be highly tuned to
perform that task well, but when confronted with new adaptive needs, such systems
may prove extremely fragile. Alternatively, if the system is naturally variable the
output may never be exactly "right" for a given task, but it may be right enough for
the ,ystem to adapt successfully to different situations. Moreover, given a limited
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number of neurons, a greater range of outputs may be possible when the system
has variable and blendable outputs than when the system contains a rigidly fixed
number of output patterns.

Error may not only be a product of system dynamics, it may also be influential
in the establishing the dynamics. The first indication of this was in studies of hy-
percycle catalytic networks originally devised to account for the first steps in 'hem-
ical or prebiotic evolution.53.106 Schnabl. Stadler, Frost, and Schuster167 recently
showed that error, expressed as mutual intermutation between reactive molecular
species significantly affects the ability of a system to bifurcate into complex, chaotic
oscillations. Andrade et al.6 provide a more biologically plausible model of error uti-
lization in catalytic networks that may be modifiable for application to studies of
neural networks. In this model, error arises from faulty replication; i.e., in mutual
intermutation the error is transformed into information contained in another re-
actant species, whereas in faulty replication, information is simply removed from
the system. Although the generation of complex (chaotic) behavior in this latter
model is less sensitive to changes in error than the mutual intermutation model,
analysis of both models using the level of error as the bifurcation parameter shows
that error plays a role in the dynamics occurring among the catalytic interaction.

3.7 DEFINITIONS: DYNAMICS, BEHAVIOR, AND MULTIFUNCTIONALITY

The above discussions provide the background for us to present several working
definitions. In the most general terms, we take the term "cdynamics" to imply the
generation of cooperative activity among a group of interacting components of a
system. There may be many different dynamical mechanisms: linear shifts in the
aggregates of coactive components, bifurcations, limit-cycle and chaotic attractors,
attracting states, turbulence, and self-organizing criticalities are just a few exam-
ples that we mentioned. As we shall attempt to illustrate further in Section 8,
our definition of "neurocircuits" relies heavily on dynamics rather than network
architecture.

In much of the preceding discussion. we have used the term "behavior" in
the sense that the behaviors are distinctly different, as if feeding, regurgitation,
righting, and other behaviors in the animal's repertoire, were definable. Indeed,
the notion of a repertoire. seems to indicate that they are definable. However,
our above discussion of "contexts" and "consensuses" shows that we do not be-
lieve that behaviors need be repeatedly the same. For example, the animal ingests
food, it may regurgitate it, and it may right when inverted. Yet the animal may
perform these behavioral effects in many different ways. If we are correct in our
assessment of variations in neural activity and contexts, it is possible that the kine-
matics of the behavioral effect are always changing. Given this blurring of what the
term "behavior" may mean, it is obvious that systems capable of generating many
different behaviors using the same neurons must be defined in ways that include
variation. Therefore, multifunctional networks to us implies patterns of activity and
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behavioral effects that can lead variably from one effect to another as well as the
generation of distinctly different behaviors.

3.8 DEFINITION OF CONTEXTS IN GROUP ACTION: LINEAR AND
NONLINEAR ORGANIZATION

To gain some perspective on our definition of contexts in group function, the above
subsections provide some of the necessary background on what we mean by behav-
ior and what we mean by nonlinear dynamics and attractors, different modes of
cooperative action, and optimization and its relationship to different forms of vari-
ation as these factors play on attractors and on turbulence-like phenomena. The
discussion has introduced the importance of local minima and error. The heart of
all of these response phenomena lies in the anatomy of convergence and divergence.
It is easy to refer to behavior, but once closely examined, we have realized that be-
havior may not be as definable as presumed, though we do not deny that definable
behaviors do exist.

We began this section using references to studies that have considered how
distributed interactions among neurons lead to behavior, and which have proposed
that the appropriate behavior arises when a large number of neurons, or perhaps
all or most of them, become active. 4 1' 9 0' 9 1' 9 2' 189 This is part of what we mean by
"contexts" and "consensuses." Linear summations such as implied by "large num-
ber" do not address two important problems. First, if attractors or other nonlinear
phenomena arise, it is not necessary for the majority, or a large number of neurons,
to become active. That is, coherent activity may take place among a minority of
neurons, but if the coherence is strong enough, we believe that its effect may over-
ride activity that is less strongly organized, though both coherent and noncoherent
activity probably affect the actual expression of the resultant behavior. The ques-
tion, then, is not how many neurons become active but how strong the coherent
activity is above a "noise" level. Second, even if the interactions are linearly related,
or if robust, stable attractors have not organized, adaptive responses may still take
place, though the effect may not be as strong as in cases when the majority of
neurons act together or when there %re strong attractors.

4 BEHAVIORAL AND NEUROPHYSIOLOGICAL FINDINGS IN
OTHER ANIMALS
4.1 INVERTEBRATES

4.1.1 OVERVIEW OF MULTIFUNCTIONAUTY AND VARIABILITY Taking advantage
of well-defined connections between four ident;fiable cells in the buccal ganglion
of Aplysia, Gardner60 has shown that synaptec effects between identified neurons
vary widely from animal to animal. Drawing an analogy to connectionist neural
networks, Gardner points out that the importance of a network is not so much in
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what its synaptic strengths are but rather in what the set of synapses together can
do in expressing the information in an algorithmic process. The difference between
biological networks and neural networks is that the temporal interrelationships in
the firing of neurons may shift, and that the same network may be able to generate
different patterns of activity.13s1, 39 Thus, in Gardner's terms, a set of connections
may contain the information for many different algorithms. Our modification to
this is that one must not consider the algorithm as being repeatedly the same: i.e.,
the algorithm is itself variably expressed.

Recent findings in the sea slug Aplysza108 '1 9 5 and in lobsters2 6' 7 5 ,
7 6' 7 7

,108.
10 9

are consistent with the notion that the same network can produce activity relating
to different behaviors (i.e., they are multifunctional), as is the work on yet an-
other sea slug Tritonia,62' 63 although only the work on Aplysza has taken notice
of variation.1 9 4 An important paper describes leech locomotion, and asks what it
is that the "central pattern generator" really mediates since a variety of variable
behaviors were observed." Kien 90' 9 1'9 2 has published a series of insightful papers
on locust walking, and has addressed the notion of variation through observations
indicating that different groups of neurons become active to produce a behavior.
Variability has also been reported in walking motor patterns in cockroaches. 47

By the late 1970s the notion that "hard wired" networks can explain behavior
had received strong support form studies on genetically inherited ability to gener-
ate patterned activity in a many animals.' 9 Nonetheless, ten years later, Getting62

voiced the following interesting conclusion from his work in Tritonia, "Networks
with similar connections can produce dramatically different motor patterns, and,
conversely, similar motor patterns can be produced by dramatically different net-
works," just as one can read from the work in Pleurobranchaea138 that, "Organized
activity emerges or self-organizes such that different contexts of the same coachve
neurons become involved in generating the same or different motor pattern." Much
evidence in neurobiology has shown that it is possible to ascribe particular func-
tion to identified neurons, and criteria of how to do that have been extensively
discussed.46"0 4"0 5" 6 ° Some of the same researchers have also put forth the con-
trasting notion recently that conditions might exist under which it may not be
possible to ascribe function to particular neurons. 10 2

Thus, although the classical pers'jective still seems to hold, and much evidence
exists to support it, there is a growing awareness of alternative possibilities. Our
feeling is that it may be difficult to make direct comparisons between animals,
even if there seem to be many similarities, as there are, for example, in the general
neuroanatomical features of the nervous systems in snails and slugs indicating that
their nervous systems contain neurons such as the BCNs in Pleurobranchaea. It may
be, for example, that feeding systems in animals that evolved to utilize relatively
stable and predictable food sources may be less variable than ones having to cope
with unpredictable ones. One might envision such a comparison between certain
herbivores and carnivores, though the definipg experiments have not been done.
What is most important in all of this is that people have begun to address the issues,
and quite likely the most illuminating comparisons will be ones that involve different
response dynamics. Our bias is that variation should be a common observation. In
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cases not exhibiting variation, the question tli,.i has to do with the mechanisms
that control variation.

4.1.2 BIFURCATION AND RESPONSE MODALITY IN THE LOBSTER STOMATOGAS-
TRIC SYSTEM The recent discovery of the ability of the stomatogastric ganglion in
lobsters to generate different behaviors 75 ' 76' 77 shows clearly that one must not as-
sume that even the simplest networks produce only single responses. The findings
of Cardi et al.26 are worth casting in our frame of reference relating to bifurca-
tion. The stomatogastric ganglion in lobsters contains a subset of 14 neurons that
comprise the pyloric network which acts as a central pattern generator. Of partic-
ular interest in this network is a further subset of three pacemaker neurons that
form the oscillator. Another oscillator lying in the commissural ganglion sends pro-
jections to the stomatogastric ganglion. By using sucrose-block techniques on the
nerve interconnecting the two ganglia, it was possible to reversibly interrupt the
connections between the two oscillators. When the projections were blocked, sys-
tematic injection of depolarizing and hyperpolarizing current into one of the three
pyloric pacemaker neurons resulted in continuous variation in the period of oscilla-
tory bursts of activity in the pyloric rhythm. But when these projections were not
interrupted, the period varied discontinuously, and, for some ranges of the injected
current, two modes of oscillation emerged at a particular level of injected current.
Overall the results show that the timing between the two oscillators affected the
modes of integration in the pyloric network, and that the commissural projections
also exerted neuron Julatory control over the pyloric network.

There are two ways to look at this data. The first is that there is some reflex
circuit change that alters the oscillations in the pyloric network when the connection
between the two pattern generators is intact. This seems reasonable if one considers
that neuromodulation may be capable of adjusting which neurons participate in the
oscillatory interactions or their interrelated timing (e.g., Marder119 ' 1° 1 ). !-;ing
John's8 2 terminology, the network may use "switchboard" factors to control whc ier
the network produces unimodal or bimodal firing in its burst patterns.

A broader perspective holds that the role of transmitters and modulator is to
raise the network closer to a critical point for bifurcation. Small, systematic adjust-
nients in the current injected into one of the three pattern-generating neurons push
the system beyond the critical point allowing the network as a whole to oscillate
in two modes, or to jump discontinuously from one period to another. When that
transmitter (or transmitters) is not present, as when the connections between the
oscillators are interrupted, the system settles into a state that is far from the bi-
furcation point. In this case, no amount of injected current will push the network
close enough to the critical point to permit bifurcation to take place. What does
happen is that the period varies continuously as a function in the strength of the
injected current. This is precisely what happens when one varies the bifurcation
parameter in a system that is far from a critical point (e.g., see Thompson 1a and
Andrade'). There are two potential bifurcation parameters in the study of Cardi et
al."6 The way the experiments were conducted uses the polarization state (amount
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of injected current) of one of the pattern-generating neurons as the bifurcation pa-
rameter. However. if there were sufficient knowledge of the cells in the commissural
ganglion that project to the pyloric ganglion, their level of firing could be used
as the bifurcation parameter for each level of applied polarization in the pattern-
generating neuron.

The advantage of using bifurcation analysis may not be appreciated in studies
of most experimental biological systems because of their complexity and of the dif-
ficulties they pose in permitting selective control of a single parameter. The utility
of the analysis becomes more obvious, however, in computer simulations. Not the
least utility of bifurcation analysis is that it may provide some predictability. For
example, Feigenbaum 59 observed that the succession of period-doubling bifurca-
tions occurs in a universally predictable way. The ratio of differences in successive
bifurcations is given by T; = (It, - pz,+t)/(/Pi+1 --i+2), where /a is the value of the
bifurcation parameter in the sequence of bifurcations from i = 1 . ... ,. For many
bifurcation maps. TJ quickly converges to 4.6692 to the fourth decimal place. The
pyloric network may be small enough to permit the use of computational methods.
The major task will be to determine what parameter to control. though information
from neurohumoral experiments may point to candidate factors. Different bifurca-
tion states may use the underlying network architecture in different ways. The way
the network expresses the-'arious firing patterns among its constituent neurons
is not predictable from knowledge of the bifurcation parameter itself nor of the
anatomy of the neuronal connections. Predictability of these functional or emer-
gent networks is even more difficult in large networks or if variability is a factor. If
there are many weak synapses, there may be insufficient synaptic power to control
how the activity traverses the connections among the neurons. Previous activity in
the network may alter how the neurons participate in the future to produce similar
overall patterns of activity. Both factors have been observed in Pleurobranchaea,13 9

and may affect how the network responds during bifurcation.

4.2 MAMMALS

- he importance of variation in brain function was, to our knowledge, noted first in
mammalian studies. The work of Adey and coworkers (see summary in Adey'), done
over twenty years ago, on the chimpanzee and human electroencephalogram (EEG),
and on firing of cortical neurons in cats, clearly expressed the need to consider that
noise may have a crucial role in the organization of brain function. Adey noted
that while information must be contained in structure, the way the information is
expressed quite likely is not obtainable from knowing the connections of structure
itself. At about the same time, John"2 discussed the problem of considering cortical
structure as statistical rather than as "switchboard" circuits that can be deciphered
simply by examining the connections. The ideas expressed by Adey and John were
seminal in solidifying reservations in our own laboratory about the viability of as-
cribing whole-animal behavioral phenomena to simple neurocircuits. 14 3 Wetzel and
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Stuart"8 9 clearly favored a variable neuronal group hypothesis to account for ver-
tebrate walking. More recently. Braitenberg21 examined the connectivity of visual
cortex and suggested that. activity flowing through it may resemble a random walk.
Rapp et al."5 ' analyzed spontaneous firing in cortical neurons and suggested that
the variations observed in cortical may not be random, but rather may arise from
deterministic low-dimensional mechanisms such as chaos. Variation appears to be
an important avenue for self-organization of cooperative activity occurring simul-
taneously over the entire surface of olfactory bulb. Freeman and Skarda r2 have
proposed that the dynamical state of the bulb shifts from chaotic baseline vari-
ations into memory-specific limit cycles that are evoked when the animal inhales
odors.

All of these findings are consistent with our own findings in Pleurobranchaea,
and, in turn, our findings i iggest that the different variational types may provide for
response optimization into different attractors. Although the work in Pleurobran-
chaca represents the first, demonstration that chaotic activity underlies adaptive
responses in animals, it is necessary to take the evidence extremely cautiously, as
has been pointed out."- 13

7.
144 However, to the extent that chaos does hold to be

the case in Pleurobranchaea, and in the various observations described above in
mammals, it may prove a general principle to pursue further that the variations
may not only convey infofmation for a behavior but also may provide for one of
the methods for response optimization discussed in Section 3.

4.3 DIVISIONS OF THE MAMMALIAN MOTOR SYSTEM: RELATIONSHIP TO
DIVERGENCE AND CONVERGENCE

Mamy, _.an motor behavior may be classified as involving the pyramidal system
(PS) or the extrapyramidal system (EPS). According to the classical view, execution
of all voluntary movement in mammals is initiated by motor cortex acting through
the PS, which constitutes a two-neuron chain. The upper motor neuron descends
from the cortex and synapses in the spinal cord with the lower motor neuron.
which innervates the muscle. Going backwards, each muscle fiber is innervated by a
single lower motor neuron, which is contacted by only a few, perhaps a single upper
motor neuron. So, each skeletal muscle of the body has a topical representation
in a specific zone of the motor cortex. Stimulation of a specific region results in a
stereotype response, which, if the stimulus is focal, includes one muscle fiber only.
A given cortical neuron can act in two different states depending on the context
defined by preceding impulses from the associative cortex.18 1 This seems much like
a switchboard, showing a precise structure-function correspondence. It can function
as such, but the result is not the kind of movement we would like to perform. We
get an idea of what kind of movements the PS can produce by itself by watching
patients with dysfunction of the cerebellum or the basal ganglia, as in the case of
Parkinson's disease. Their movements are coarse, as if the limb-moving is not quite
sure of the goal. They have often heavy tremor, suggesting an imbalance of muscular
tone at rest. Similar imbalance during movement is indicated by rigidity, suggesting
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that processing, ol' the sensory informationi about continuously altered position I."
Tiot occurring fast. enoug~h or precisely enon 1lh. \VPe mlight sýay t Lat t he I'S lues, not
tolerate nearly as muich error ., t he V[PS. It is, iwterost ing to e1inpri asize I hall In (*'Ulses

of cerebellar i ufarc ts or in Parkinson's d isea~se. I lie spinai cord . vii h all its rejllex -,
is supposed to be Intact and functionlin the hes~t it caii performi. 'Ihlerefore. 1,w
PS may exhibit considerably less conver-ence of overlappin[g intitorniatioll and less
i st ribtited actI on. Thle onle-i 0-one rua,11)ini.n :11lows Ihe Ps I o (Xecii111e pr'cise CullIt riI
4movement lhiait ay make it extre~neiev ,rror prone should ai p-rimcular !iIIe ta:il.

whereas the V.11PS may exhibhit less pre~cise c)n t rol vet mnax be less e~rror prone, when
its coMponents fail.

Although the physiological finding t hat Yivent mnuscuiilar response~s c-an only 1),
obtained by st~imnulatiR~n of certain cc t ical neurons indicates t hat t here is lit tie
'onvergence. hiist ochemlical it- oa 11 'gest that mulIt iple t ri nsmit ter svýstvjs em.t,

simnliablv fro)ru i lhe FP~S and spinal cord. r-':iv4 r ll(vtI lie lower niotor nlicroti. I-it
suIbst~anICes Involved Iiicludel( lopamiiiieo. iioriiireiialiiie. >frototii i. Iiist artine.l" sIlt-

stance 1). aiid I lvrotropin releasing liurnvitir ( H If )I'-llhe upper muotor neuroti
snows somne degree o1 d ivergence . siii-ce it.s col laterals contact xvIi h IC PS tieiirotis
and spinal cord internenurons before svynaps int with thle 1awer motor - 11ron.

Classically, anything regulating miotor t Iunctions, ot her t haii 'he 25S is diefined
collectively as the F PS. It Hincludes t he blasal gan glia. tlw vest hibu ar svstem,. and the(
cerebel lum . and it is t hotight to be( responsibHe for coordination I'f imooenlent s. Its

components coninec t indirect ly wvith tIlit PS bothI at cortical and sprinal cord levels.
The components of EPS are highly interconnected. although the precise circuitry I-;

incomplet c y known, a hiigh tletyree of conver,.etirce anid d Iivergenct :ire, likely to iw cii r
lin the EPS , as suiggestedI by I,.e mnorpholoiL'v of. th..le cerebel lar Pitrk inje ci Is
Mnd basket cells. Bx' contrast . t he PS has si-n ificatit lx' fewer conne~ct tots ainoti ' its
constituent neurons.

T1his distinction bet ween P~S and I'.PS. however. inav not he in imti IH. : s
in licat~cl by mnotor learning. (Consider a musician learnin I v a niex piece or ai eti r

wearn ing a tiew number. In Cit liv, the mnetor pattern is, ettablislied iunder r4 in ic
control. TIhis always happens relatively slowly and. o)nce it, gets la.St enoughi. the
cortex cannot bandlIe it an] may even Inhibit t he pat tern. Who re is the pat temn

transferred to? It mnust be some su belrt ical level t hat takes over t he pattern. :All
xve know is that tie control levels must he aL,.ave th 1w h iwer niot or nieuiron. xwh ich
is the finial comiurion pathway and that, the p;.ttern mutst be processedI 1y the VICPS.
C'ontrol can be switched back and forth between the djifferent levels. but the I'S
and EPS seemn -inost. to have switched their functrional categorizat ion. lo be sure.

learning m av model [PS to conform to convergence architectulres that exhibit 1I.ss
converg,-Tct amid variatrion, as uiscussed below lin relat ion to Fi.Iigre 4.

TFhe diffuse reticutlar activating systern (HRAS) is p~erhaps most apropos to dfIS-
cussions of convergence and divergence, and adds a control factor that must be

considered with all somatic motor functions. We know from everyday experience
t~hat rather sophisticated motor activit~y can take place at the lowest states of ac-
tivation (sleepwalking) or rather gross errors may occur, if the state of activation1
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is overly high. The structure classically thought to be related to the state of acti-
vation is the RAS of the brain stem. Interestingly, this is not really a structure in
the sense of the nuclei or the cortex. Rather, its neurons are diffusely spread over
a large proportion of the brain stem. Considering the anatomical fact that most of
the vital regulation centers are located in that region over a very small space, RAS
must be in contact with just about everything. It has been thought that RAS con-
trols mainly autonomic vital functions. However, it has turned out that a reticular
system is found all over the spinal cord as well. So it is reasonable to expect that
RAS is intimately involved with motor functions too. (Our guess is that the RAS
extends over all the cortex as well. if we only had markers to identify the cell types.)
Thus, a better understanding of differences in the connectivity and function of the
PS, EPS, and RAS, and their interactions, may shed some light on the functional
significance of convergence and divergence.

5. NEUROMODULATION
5.1 CONVERGENCE AND DIVERGENCE OF NEUROTRANSMITTER
SYSTEMS --

5.1.1 INVERTEBRATES In the classic view, experimental manipulation of individ-
ual neuromodulators often generates predictable effects, as has long been demon-
strated in other animals.1 16' 118 ,119,149 Our own work began with a similar inten-
tion: to identify behavior-specific neurotransmitter evidence relating to associative
learning. There is good pharmacological evidence for the classically defined type of
cholinergic muscarinic receptors (and of a new form) in Pleurobranchaea.' 50 Behav-
ioral evidence shows that muscarinic receptors have a role in associative learning. 147

Development of irnmunofluorescence methods for detecting the transmitter for these
receptors, acetylcholine (ACH), has allowed us to identify the location of presynap-
tic cholinergic neurons. 174 ,17 5 Using complete serial histological sections to examine
the full extent of the projections led us to the finding that we should have expected
from our physiological work, but, interestingly, we did not. The histology showed
that a relatively few cells diverge perfusely throughout the nervous system, hardly
leaving any portion of the neuropil untouched.

This led us to examine the distribution of over a dozen putative neurotrans-
mitters in complete serial sections of all ganglia in both Aplysia and Pleuro-
branchaea. 1 74 ',175

,
17 6 Examples of these findings are shown in Figure 2 (A-F) for

Aplysia and in Figure 2 (G-I) for Pleurobranchaea. Each transmitter we examined
involved a few neurons that diverged and converged extensively over the same tar-
get areas of the neuropil, and on individual neurons. The alternative possibility
that neurotransmitters projected selectively onto different areas was seldom seen.
Our present working hypothesis, which is being examined physiologically, is that
there may be little motor specificity in the projection of neuromodulators, though
there may be differences in their actions. Recent physiological findings in Aplys:a130
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support this hypothesis since individ ual bath-applied transmitters and neuromod-
ulators appear to affect all motor systems examined.

FIGURE 2 A-F: Photomnicrographs of the neuropil region of .4plysia buccal ganglion
showing immunoreactivity for (A) histamine, (B) serotonin, (C) ACH, (D) GABA (gamma-
aminobutyric acid), (E) VIP (vasoactive intestinal peptide), (F) FMRFamide (Phe-Met-
Arg-Phe-NH2,), cross in (C) indicates immunoreactive neuropil, and the arrowhead
shows immunoreactive terminals around nonreactive neurons. Bar = 100 Jim (A,D,E,F)
or 50 pim (12,C). (G)-(I) (now labeled (A)-(C); will be changed): Photomicrographs of
the neuropil region of Pleurobranchaca buccal ganglion showing immunoreactivity for
(G) histamine, (H) GABA, (1) FMRFamide. Bar = 100pm. Note the extensiveness of
the immunoreactive coverage throughout the neuropil in all tissues from both animals.
Positive immunoreactivity is indicated by the white profiles that are extensively (cont'd.)
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FIGURE 2 (cont'd.) distributed over the black nonreactive areas. For reference, in
Figure 2(I), FMRF-amide covers the entire neuropil of the buccal ganglion. The large
cell at the right is the buccal giant, and the commissure leading to the left half of the
buccal ganglion is at the left margin. The anterior margin of the ganglion is delineated
by the row of dimly stained cells at the top of the micrograph, and the posterior margin
is shown at the bottom edge of the neuropil. The area between the neuropil and the
row of dimly stained cells contains cell bodies which are not seen because they contain
no immunoreactivity. Reprinted with pQrmission from Biol. Bull 181 (1991): 484-499.

Given the physiological finding of the extensive convergence and divergence in
Pleurobranchaca,13 9 and the corollary finding in Aplysia that sensory stimulation
activates perhaps the majority of neurons in a ganglion.195 the interesting possibility
arises that conditions may often arise when many or possibly all neurotransmitters
may become active at the same time. In this case, the classic view of neuromod-
ulation that has been generated using selective applications of single transmitters
may not provide adequate insight into the physiological effects produced under nor-
mal behavioral conditions. The classic view comes, we believe, dangerously close
to making an unstated assumption that the effects of the individual transmitters
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on common target, neurons sum linearly. But if conditions arise when the interac-
tions are nonlinear, the classic experimental approach provides us with little insight
into how neuromodulation acts to control network function in normally behaving
animals.

5.1.2 VERTEBRATES As in the above discussion. %e ,provi(ie only selected exam-
pies here. Extensive innervation by iierve fibers staining tor a large number of
transmitters. such ;as ACII. dopamine. serotonin. histamine. GABA. taurine. glu-
tamate. enkephalin. anZgiotensin. cholecystokinin. TRH. and vasoactive intestinal
polypeptide, has been described in the mammalian striatumn.7:• Likewise, multiple
transmitters (ACIH, serotonin, noradrenaline. glutamate. GABA) have been local-
ized throughout the cerebellar cortex."6 9 The wulst ("bulge") is a structure in the
avian brain that resembles the mammalian neocortex. It is bipartite and runs the
length of the dorsomedial portion of the fieniispihere. A niithiai portion is similar to
the mammalian hippocampus jwulst regio hippcampaiis. Wrh ). ,and a lateral por-
tion is similar to regions of the somatosensory neocortex (wulst regio hyperstriatica.
Whs). Both structures are laminated, permitting experiments that can determine
whether neurotransmitters are differentially (listributed between and within lam-
inMa. Shimizu and Kartenl 7" examined the iinmunohistochemical location of cell
bodies and fibers containiu* serotonin. ACH (through localization of choline acetyl-
transferase. ChAT, and nicotinic ACH receptors. nAChR). ,'atechoiamine (through
localization of the enzyme tyrosine hydroxyiase). GABA (through localization of
the enzyme glutamic acid decarboxylase. GAD. and the GABAA receptor), and
the neuropeptides substance-P (SP). leucine-enkephalin iL-ENK). neuropeptide Y
(NPY), neurotensin (NT), somatostatin releasing-inhibiting factor (SRIF), corti-
cotropin releasing-factor (CRF). vasoactive intestinal polypeptide (VIP), and chole-
cystokinin (CCK). Although these substances exhibited laminar specificity, evi-
dence was obtained showing that many regions of the Whs contained overlapping
transmitters and neuromodulators. For example. in some portions of a large region.
the hyperstriaticum accessorium. evidence was obtained for all substances except
CCK, though the density of distribution for each substance was different.

An ideal structure to use for such purposes in vertebrate animals is the retina
because of its well-known function anid neuroarchitecture, and the ease with which
its various cell types can be identified. 5°'• Present findings indicate that many neu-
rotransmitters and neuromodulators are located in the various cells of the retina, 8
but the methods do not show clearly enough how much divergence and convergence
among the cells in the retina or wulst, and how much occurs from the retinal gan-
glion cells onto other brain areas. A better method of analysis is to use evidence
from the location and distribution of transmitter receptors. Progress in the labora-
tory of Professor Harvey J. Karten 6 at the Department of Neuroscience, University
of California at San Diego, indicates that individual retinal cells contain receptors
for many different neurohumoral factors, and that many cells stain for the same
receptors, indicating that there is extensive convergence and divergence of neu-
rotransmission and neuromodulation. Because of its experimental approachability
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and well-known function, the retina may provide a rich experimental source for un-
derstanding how multiple converging factors interact to control neuronal function.

In human physiology, Parkinson's disease is probably the best-known example
of a transmitter-specific defect in human motor function. Its cause is considered
to be a decrease in the activity of the dopaminergic nigrostriatal tract. Clinical
neurology has established that when the amount of dopamine is too low, the action
of the dopamine antagonist. the cholinergic system of the basal ganglia. becomes
too strong. The treatment. 1-dopa. increases dopamine levels to retain the balance
between the two systems. However, there is nothing in here to prove that the action
of the dopamine-ACH system is necessarily based on fixed circuits and that it acts
individually in normal brain function, Although dopamine is found in a specific
tract, we do not know how much divergence or convergence is involved in that
system, and what the effects may be when many neurons and transmitters act
together.

Although the pituitary is not a classically definable motor organ. it provides an
excellent example of multi-hunioral control. The intermediate lobe is a morpholog-
ically homogeneous group of cells that all contain the same hormones, melanocyte-
stimulating hormone and bet a-endorphin. The question is why are so many different
transmitters needed for the simple regulation of inhibition-excitation. Stimulatory
(serotonin. ACH) and inhibitory (dopamine. opioids, probably GABA) actions have
been described for one substance at a time, but we have no idea how these sub-
stances act together. Since the output is so simple and easily measurable (hormone
secretion), this tissue may provide a model to study the implications of divergence
and convergence of multiple neurotransmitter inputs.

Figure 3 summarizes some of our findings in rat pituitary. The data clearly
support the possibility of high convergence onto the same target areas, but since
there is presently no morphometric evidence of how many neurons provide the
innervation, we cannot presently provide an estimate of the ratios of convergence
and divergence. The pituitary is particularly interesting since the output of the
system in response to converging actions is neurohumoral rather than electrical.

In conclusion, we suggest that the properties of nonlinearity, distributed func-
tion, variability, multifunctionality, convergence/divergence, and the likelihood that
the system is error-prone, all of whrch we have attributed to the electrical neuro-
circuit, may also be ascribable to neuromodulation. It may be possible to obtain
repeatable effects when controlling certain transmitters, but what the effects may
be or how to conceptualize the interaction of many transmitters (acting at very
low concentrations) is presently unclear. If the dynamics of target processes (elec-
trical or chemical) are far from bifurcation points, the nonlinearities (or any effect)
may not be observable. But given that the bifurcation points are accessible, the
number of possible effects arising from electrical nonlinearities and from the effects
of transmitters, cotransmitters. and neurohormones become enormous. If we are
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FIGURE 3 Photomicrograph of rat pituitary. al: Anterior lobe. 0i. 'ntermediate
lobe. pl: posterior lobe. (A) Acetylcholine. (B) MEAGL (Met5-enkephalin-ARG6-
GLy 7-LEU11. (C) Serotonin. (0) GABA. (E) Tyrosine hydroxylase, the dopamine-
synthesizine enzyme. Note convergence of these substances onto similar areas of the
intermediate and posterior lobes, as shown in Figure 2 for neural tissues of .lplysza
and Pleura branchaea.

to believe that neurohumoral agents act variably and in concert, then we must
envision further that the subcellular mechanisms that each of these receptors and
channels activates, may lead to converging and diverging nonlinear actions within
the cell itself. Thus, it is conceivable that the clarity of the mechanisms presented
for a single neurotransmitter or a single se con d- messenger system may be somewhat
misleading. The point that needs to be examined further is that there may be many
different sites of converging interactions in biological systems that process the same
information in parallel, and perhaps in different ways, but may be capable of sharing
the results of such processing. Thus, systems may exist in which it may not be
possible to ascribe unique function to any motor, cellular, or subcellular process.
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6. REDUCTION AND EMERGENCE IN CONTROL
MECHANISMS
How are these widely distributed physiological and neurohurnoral processes con-
trolled'? We suggest that many are not, at least not explicitly. It would be too
costly, for the same reasons that it, would be too costly to devise neurocircuits for
each behavior. It seems better to allow the system to be error-prone. As discussed
in studies on Pleurobranchaca. 1:3 138,139 some looseness may actually be beneficial
since systems needing to be highly tuned to specific tasks may prove to be brittle in
variable, unpredictable environments. Put differently, it seems better to allow the
interaction between the organism and the environment to determine the behavior
than to "hard wire" encode all of the behaviors that an animal can perform.

6.1 TRANSMITTERS CONTROL NETWORK FUNCTION AND
ARCHITECTURE

There are, of course, demonstrable control mechanisms that we need to remember
that show hard-wiring. For example. as we have mentioned previously, it has been
shown that selective application of neurotransmitters evokes different patterns of
activity in simple ganglia,48, 111.119 just as there is a vast textbook literature showing
evidence of'the classical 'neurocircuit." 83 Most published evidence weighs heavily
in this direction. Thus, good evidence exists to show that "Each neurotransmztter
or neurotransmztter system ma.. . be able to elicit, from the same neuronal circuit.
a characteristic and different 'operational state. ' In this way it would be possible to
obtain a wide range of stable neuronal outputs from a single circuit." 121

A remarkable series of experiments by Kater and coworkers (e.g., Kater and
Mills 8 7 and Lipton and Kater1 1 1 ), begun initially in the fresh water snail Hell-
soma and now extended to mammalian neural tissues, shows the ability of trans-
mitter receptors to control neuronal growth. plasticity, and even survival of neu-
rons. The work has examined a spectrum of neurotransmitters and neuromodu-
lators, including ACH, GABA, dopamine, glutamate, norepinepherin. serotonin,
somatostatin, and VIP. Taking adv;Tntage of cell culture of identified neurons, the
work has been able to provide a strong basis of control experiments. As one exam-
ple in Helisoma, serotonin, an excitatory transmitter in this system, retards neu-
rite outgrowth whereas the addition of ACH, an inhibitory transmitter, prevents
the serotonin-induced inhibition. The transmitters work through the depolariza-
tion state of the cell. For example, presenting an excitatory transmitter alone re-
tards the normal neurite outgrowth, but superimposing hyperpolarizing current on
transmitter-induced excitation allows the neurite to resume its normal growth rate.
The transmitters may act either through voltage- or receptor-activated channels
on a common intracellular messenger, calcium. As Lipton and KaterIll summa-
rize, neuronal architectures (and therefore neurocircuits) are determined by a fine
balance in the activation of these two types of channels through an interplay of
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excitatory and inhibitory transmitters (though different mechanisms may be used
in other neural systems: see Garyantes61 ).

The term -'balance" clearly indicates that Lipton and Kater are aware that con-
trol in natural biological systems may he high-dimensional since neural tissues are
known to contain many transmitters. The problem. then. is to determine how the
high dimensionality is expressed. One possibility is that there is simple linear sum-
mation of the effects produced by the various transmitter However. it is well known
that the electrogenic properties of the postsynaptic cell can easily change a simple
synaptic input into a nonlinear response. Twenty years ago, Wilson and Cowan; 1

conducted computer simulations on a population model to illustrate that groups
of cells intercommunicating through excitatory and inhibitory connections exhibit
damped oscillations, multiple stable states. and., under certain constraints, stable
limit-cycle oscillations in the number of excitatory and inhibitory neurons firing per
unit time. A rather interesting feature of the model is that local interactions were
essentially random, yet the long-range elfects were quite organized. Another inter-
esting feature of the model that is pertinent to the present discussion is that the
population of excitatory and inhibitory cells were homogeneous: differences arose
statistically through use and refractory period. In even simpler networks involving
one-shot activation between converging inputs to a common neuron can lead to
linear and nonlinear effects4in the postsynaptic cell. 5 9" In single neurons, it may be
possible to generate many different periodic and aperiodic firing patterns by means
of fine adjustments to a single ion channel.-9 This latter study also showed that
intracellular calcium concentration may fluctuate differentially and nonlinearly in
each dynamical state. Therefore, the controlling balance between converging trans-
mitters and neuromodulators that affect neuronal structure need not be a simple
linear affair. What may seem a linear balance, under some parameter ranges of the
neurohumoral state., can easily switch to drastically different conditions at. critical
bifurcation conditions.

The dynamics of interactions arising in population of cells need not employ the
full high-dimensional space. Going back to our notion of attractors, the differn t
dynamics that a network will allow determine the characteristics of temporal visita-
tion of activity at any given neuron in the coactive group; i.e.. a set of connections
will be activated differently by the types of attractors that it can sustain. Although
a developing network at some primitive state may exhibit different dynamical capa-
bilities than a finely tuned, mature one, the same questions (,: nlinear conditions
arise in both. Finally, if attractors arise either in the responst. :gle neurons or
in networks of them, the high-dimensionality we see in the number of transmitters
present may not necessarily be expressed as a high-dimensional process. It is an in-
teresting possibility, raised by numerical studies, that coordinated activity in poten-
tially high-dimensional systems often results in low-dimensional attractors.144172
From a simple listing of the number of transmitter resulting from experiments in
which transmitters are applied one at time oy in pairs, it is not evident how the
system dynamically collapses into low-dimensional control, and which of the trans-
mitters become involved. Even in small model networks in which all of the driving
differential equations are known, it is not obvious from the equations themselves.
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nor presently from the connectivity, how it is that a lower dimensionality arises
from a larger possible set of available variables unless the system is examined after
activating it. 6

Given a linear system, it may be possible to say that neurotransmitters are
architects of neural structure. But, as we shall discuss later in Section 8 when dealing
with bifurcation in minimal networks, conditions may arise when the activity itself
is what fine tunes a network, and in turn, the network redefines the type of activity
that can emerge. There is a dialectical interplay between the two elements, and this
dialect, we believe, can act as an architect of neurons and circuits. The chain of
events that we might envision of the events that control cell structure is as follows:
The dynamics of firing in individual neurons and in networks of them acts on
structure through transmitters; the transmitters act on the cell through calcium.
The dynamics of changes in intracellular calcium sets up a chain of events that
affect cell growth. But cell growth redetermines what the dynamics will be, and so
forth recursively. Other factors may contribute, such as synaptic competition. If the
notion that many neurons act in close temporal association, or in coordination, is
correct, we must then add the complication that the system as a whole is extremely
.-.igh dimensional and that many types of nonlinearities may occur. As we shall
speak below of the locus of learning, there may he no sine qua non balance of
neurohumoral agents forta given architecture to appear. Although there may be
many systems in which there is always a precise connection between a balance
between a particular set of chemical elements and structure, understanding these
systems gives little insight into others in which variability is an issue.

Thus, while the scientific method at our disposal provides elegant connections
Letween cause and effect, much as Descartes and Euclid would like us to believe,

possibility of high-dimensional space, of nonlinearities, and of the dialectic be-
-en structure and dynamics indicate that our view of complex systems may be

LOO simple. However, the scientific methods, as they are, are nonetheless the only
ones we have. Therefore, our concern is not that the methods and conclusions are
simplistic but rather it is that they do not address fundamental questions that need
to be asked. Moreover, the clarity of some of these reductionistic methods and the
importance of the resulting findings have overshadowed the need to go beyond them
and to develop methods of data collection that may be useful in taking that step.

6.2 CONTROL OF WHOLE-ANIMAL BEHAVIOR: CRITIQUE OF
REDUCTIONIST EXPLANATION OF LEARNING IN APLYSIA

6.2.1 SYNAPSE-SPECIFIC CONTROL OF BEHAVIOR A tradition in invertebrate
neurobiology holds that an advantage of using invertebrate animals is that once
a behavior is identified with a particular motor pattern, the same behavior can
then be studied neurophysiologically in the motor patterns of isolated nervous
systems. As discussed briefly in subsection 3.3, this is quite difficult to do in
Pleurobranchaea.'-a However, the most elegant example of such reductionist ap-
proaches has been the identification of site-specific learning in the gill-withdrawal
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response in Aplysia.27,58,84,146 A long series of studies have attempted to show how
changes at monosynaptic sites between sensory neurons and motor neurons can
explain whole-animal phenomena such as sensitization, dishabituation, and asso-
ciative learning. The mechanism involves serotonin as a neurotransmitter in the
reinforcing pathway. The original series of experiments showed that activation of
serotonin receptors on sensory neurons leads to a chain of events involving adenosin
3',5'-monophosphate (cyclic AMP) that depress a potassium current when the cell
fires. This exposes an inward calcium current that broadens the action potential,
and, owing to the increase in intracellular calcium, leads to increased transmitter
release onto the follower motor neuron. A group of sensory cells, referred to as the
LE-neurons, which are usually activated electrically in isolated ganglia, provides
the input to identified motor neurons of which neuron L7 is perhaps the most im-
portant in terms of its effect on the movement of the gill. A group of cells, referred
to as L29 , provides the serotonergic input.

6.2.2 COMPLICATIONS A number of important extensions and problems have arisen
that both greatly illuminate and complicate this simple model system. We cite only
a few examples:

1. Peripheral nervous system. From the beginning of work in the late 1960s, ev-
idence has existed indicating that emergent effects may involve the peripheral
nervous system which is distributed within the gill itself. Indeed, in many cases
the abdominal ganglion seems not to be necessary for generating robust gill
withdrawal responses and simple forms of learning.146

2. Complex behavior. The once-presumed simple withdrawal reflex has turned out
not to be so simple, and consists of several different types of movements.1'8

3. Neuronal function. Some of the major identifiable motor neurons have variable
function within the same experimental preparation within the same behavior. 10 9

This raises strong questions in Aplysia as to the veracity of assuming that iden-
tified neurons have consistently the same role in a given behavior, much as
Mpitsos and Cohan'3 9 have raised regarding the function of neurons in Pleu-
robranchaea.

4. Complex network. Small, well-localized sensory taps activate perhaps half of
the cells in the abdominal ganglion, showing that there is extensive divergence
of sensory and possibly other effects."9 '

5. Non-constant activity. Cells partaking in successive taps are variable,194 sug-
gesting that localization of the network may be difficult or impossible.

6. Source of serotonergic control is unidentified. Activating L29 produces enhanced
transmitter release. Serotonin applied experimentally produces same effect. But
L 29 , which was thought to provide the serotonergic enhancement, apparently
does not contain serotonin. 94,153

7. Multiple neurohumoral factors enhance synaptic release. We now know that
at least two other transmitters, small ca.rdioactive peptide A and B (SCPA,
SCPB), broaden action potentials in LE cells and produce synaptic facilitation
on their follower motor neurons, 2 but apparently they are not located in L 2 9 .10 3
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Interestingly, SCPB produces spike broadening but not facilitation of transmit-
ter release in depressed sensory neurons, 156 which may relate to mobilization
of transmitter.

8. Multiple subcellular processes. There may be diverging cyclic AMP-dependent
processes in different forms of synaptic facilitation. 6 3 Conversely, in both the
gill-withdrawal system and the analogous tail-withdrawal system, cyclic AMP-
dependent and cyclic AMP-independent subcellular processes may converge
onto the same spike-broadening mechanisms in both the gill-"5 and tail-sensory
neurons.179

9. More than one group of sensory inputs. The possibility has been raised that un-
der some conditions, novel sensory neurons may be involved in modification of
a siphon withdrawal response whose behavioral modification has been thought
to be controlled by changes in the LE sensory neurons.193

10. LE cell activity lacks timing to be primary site of learning. Most importantly,
it now appears that there is a second group of sensory cells that have lower
thresholds than the LE cells, 36 and are probably more likely to activate than
the LE cells during training of the gill withdrawal response itself. It has now
been reported36 that the latency of responses in mechanoactivated LE cells in
all of the 32 preparations that were tested always occurred after the initiation
of the discharge in the motor neurons. Their timing in the behavioral reflex
has been difficult to determine.2 4 The problem, then, is if the cellular basis of
behavior relies on the LE cells as the site of facilitated transmitter release, the
responses of the LE cells must occur before the initiation of motor output for
that behavior, but the recent findings show clearly that they do not.

6.3 EMERGENT CONTROL OF APLYSIA BEHAVIOR: PARALLEL
DISTRIBUTED PROCESSING

6.3.1 DONT WORRY, BE HAPPY: NEW SYNTHESIS It might be tempting to some
interpreters of the above-mentioned complications in Aplysia to disparage the orig-
inal conclusions about site-specific learning. We believe, however, that that would
be a mistake. To dismiss the original-conclusions would be to fall to the temptation
that has faced previous work on learning in Aplysia, and of most such attempts in
other animals, that there is, in fact, some other reducible locus of learning, or some
reducibly identifiable neurocircuit as the generator of behavior. But by maki - the
dismissal, one would miss the more important issue that emerges from the findings,
namely, that the data may be influential in redirecting the focus from reductionism
to a higher level of analysis. It is not just that behavior may be different on different
occasions. A general scheme appears to have emerged in all of the work on Aplysia
that is not inconsistent with the findings we have obtained in our attempts to un-
derstand the integrative processes that generate behaviors in Pleurobranchaea. This
scheme relates to our discussion above of parallel processing arising from the exten-
sive distribution and sharing of information, as we summarize below in subsections
5.3.2 and 5.3.3.
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6.3.2 THE LOCUS OF LEARNING MAY NOT BE AT A UNIQUE CELLULAR SITE The
evidence cited in the above list of complications may be reinterpreted as in the
following general scheme: Different sites in the nervous system are capable of gen-
erating similar components of the same behavior, and each site is capable of af-
fecting the other; i.e., there is apparently extensive convergence and divergence
between different sensory and motor centers. Within a given sensory-motor system,
divergence is an inherent effect of even small, highly localized stimulation. At the
same time, different sensory pathways converge on the same motor neurons. Similar
convergence occurs among neurohumoral systems and their subcellular effects. 174

Thus, mounting evidence indicates a cascade of diverging and converging chemical
interactions that distribute sensory and motor effects widely.

Evidence exists that supports these possibilities. For example, we know that
weak, highly localized tactile stimulations, as used in training experiments to show
learning, activates large numbers of neurons,1 95 i.e., that divergence distributes in-
formation over many cellular loci. We also know that learning occurs in both the
peripheral and central components of the nervous system of Aplysia (see review
in Mpitsos and Lukowiak' 4 6 ). We also know from studies in isolated nervous sys-
tems and from more intact preparations that conditioning-related changes occur on
LE sensory neurons that synapse on different gill motor neurons. Training-induced
changes may occur at the:neuromuscular junction." Additionally, changes may oc-
cur during training that follow all of the criteria established for associative learning
but which do not take place between the sensory neurons and their follower neurons.
For example, Lukowiak and Colebrook" 5 have obtained evidence of associative
conditioning that excludes the major gill motor neurons. The conditioned stimulus
(CS) consisted of weak tactile stimulation of the siphon skin. The unconditioned
stimulus (UCS), in one set of experiments, consisted of strong electrical stimulation
of the pedal nerve which connects the brain with the foot, and in another set of
experiments, it consisted of strong tactile stimuli to the gill itself. During training,
dual intracellular recordings were made from sensory neurons and major identifiable
gill motor neurons (L 7 , LDG1, LDG2 , L9 ). The movement of the gill itself was also
monitored. In the course of training, the CS produced gill-withdrawal movements
that increased as a function of the number of training trials, and the efficiency of
the sensory-to-motor neuron synapses increased. Appropriate control experiments
showed that the effects were consistent with associative conditioning. However, the
number of action potentials produced in the motor neuron in response to the CS
correlated well with the actual movement of the gill only during the initial stages
of training. But most of the amplitude changes in the gill-withdrawal response was
not correlated with any changes in the number of action potentials generated in the
motor neurons. In another set of experiments, designed to mimic associative learn-
ing observed whole-animal studies, evidence was obtained for associative learning
in a significant number of reduced preparations in which there was an increase in
the number of action potentials produced in the motor neurons, but there was no
change in the amplitude of the gill-withdrawal response.

Findings such as these show that associative learning, and simpler forms of
learning such as sensitization and habituation, may take place at many different
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loci. Thus, as regards complication 10 noted above, it is not too big a jump ', realize
that learning could also happen in classes of sensory neurons other than the LE cells,
and eventually to discover that learning-related physiological changes may also be
shown postsynaptically in the motor neurons themselves, not just presyndptically in
tl•e sensory neurons. Additionally, as Mpitsos et al.' 4 3 have pointed out in detailed
control studies of associative learning in Pleurobranchaea, let us not be wedded
dogmatically to a definition of associative learning that forces physiology to comply
with a particular protocol of stimulus presentations applied by the experimenter
to whole animals. Single-trial training in this study showed, for short intervals
between CS and the UCS, that backward conditioning p iced almost as strong
conditioning as forward conditioning. Mpitsos et al. poin, . out that what may be
temporally controllable experimentally in the application of sensory inputs may not
hold physiologically. The same set of subcellular mechanisms producing learning-
related changes in forward between the CS and UCS (which is required by the
definition of associative learning) may exist to some extent when the stimuli are
presented in close temporal pairing but in reverse order. T, us. changes arising
from both the forward and backward temporal relationships between the CS and
UCS can represent associative learning (though this does not exclude argum,'nts
for different mechanisms, should they occur, to account for backward conditioning).
For these reasons, it also may not be too big a jump to accept the fact that learning
may still take place in the LE neurons of Aplysia, even if their responses arising
from stimulation of sensory skin do not occur until after the motor neurons are
activated by other sensory neurons.

Thus, while it is possible that a unique ". )cus of learning,- the engram in
Aplysia, might still be found, the data indicate strongly that the system seems to
consist of many parallel, redundant, and possibly interacting components, none of
which may be the sine qua non elcment in the learning process or in the generation
of the motor responses, irrespective of whether or not they involves learning.

6.3.3 THE NEUROCIRCUIT MAY NOT BE DEFINABLE Another tradition of reduc-
tionism in neurobiology, particularly in studies of invertebrate studies, has been
the notion that cells and their function are repeatedly identifiable. We have already
mentioned some of the problems in identifying function in Aplysaa.6' 10 9 The re-ent
computer simulations of simple neural networks relating to the feeding system of
Aplysia have led to a similar conclusion that, " ... .tests done on individual neurons
can provide misleading information on the actual role of the neuron in generating
behavior."'0 2 Compare this quote with one from Mpitsos and Cohan, 139 p. 538:
"... these findings indicate that the classic technique ,f driving a particular i'euron
in order to assess its effect in evoking activity or a behavior may be an insufficient
criterion for identifying its functional role." That is, a given neuron's fonction de-
pends on the context of activity in which it takes part. But, given variabil;;v ii; the
activity in the firing patterns within such contexts or "mobile consensuses," t'vor
this might be an insufficient definition. 32"133 ,13 9
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The neurocircuit for a behavior is misrepresented by even the most complete
mappings of .'dentified neurons that we see in publications. Studies using voltage-
sensitive dyes show that weak, localized stimulation of sensory skin of the siphon
produces massive and variable activation of neurons in the abdominal ganglion of
Aplysia.194,195 As we have discussed of the simplified networks shown in Figure 1
for Pleurobrenchaea, the connectivity of the actual circuit of interacting neurons is
quite large. The larger the overall pool, and the greater the number of weak synapses
that exist, the greater will be the possibility that the actual network generating a
behavior will be variable and undefinable.

6.3.4 DIFFERENT LEVELS OF LEARNING WITHIN DEFINABLE SETS OF SYNAPSES.
Let us assume for the moment that a small group of neurons can be isolated func-
tionally from the effects of other groups of cells. Can we then obtain sufficient
information about the network to define it completely by looking at the network
and knowing all of the connection parameters? We think not. Consider just one
example relating only to the strength f synapses. In our own neural network simu-
lations, the data indicate that synapses contain different forms of information. 23'134

One form of information ("knowledge") is task-specific relating to the computations
of one or more functions that network must perform. Another form ("metaknowl-
edge") has to do with the:process by which that task was learned- it does not affect
the network performance on the specific tasks, but only becomes evident when the
network is confronted with new tasks. These conclusions were drawn from exper-
iments that compared learning performance in networks that used random noise
to optimize changes in synaptic weights against networks that were not exposed
to noise. Both types of ietworks were allowed to reach the same level of learning
on a given task, but the noise-exposed networks learned a subsequent task faster,
even when noise was not included during training of the second task, than networks
-hat did not use noise. Starting networks at different initial synaptic strengths at
the beginning of a training sess.on yields different final synaptic settings, but all
final networks perform the same learned task equally well. Because of this, Burton
and Mpitsos initialized networks using different synaptic strengths and thresholds.
Examination of a large number of networks at the end of the first training session
revealed that the two types of trainilig methods did not generate statistically sig-
nificant differences in the means and standard deviP.tions of the synaptic weight
settings. Botii types of networks contained the same information for generating
equally accurate computations relating to the first task, but networks that were
exposed to noise contained further information that permitted them to perform
well on a second task. Each task has a particular error landscape associated with
it (see Figure 8 in Burton and Mpitsos 2 3 and Figure 13 in Mpitsos136 for examples
of error landscapes and volumes). Burton and Mpitsos suggest that noise-exposed
networks sample these error-structures more completely than networks that were
not exposed to noise. Thus, when confronted mwith new tasks having any similarity
in their error structures as the first task, the synaptic settings of networks exposed
to noise already contain information about the new task and are able to navigate
its error fields rapidly. By contrast, since networks that are not exposed to noise
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contain less of such information, they are not able to navigate as rapidly through
the new error structure.

The implication of these findings for the present discussions is that one may
look for changes relating to a given task, but depending on the conditions un-
der which that task has been learned, the aggregate of synapses within a pool of
neurons may contain different types of information, where one type pertains specif-
ically to one or more tasks that have been learned, and the second type pertains to
more general conditions that do not affect the accuracy of the first, but nonethe-
less may camouflage the results that the experimenter is seeking to identify. The
rabbit olfactory bulb' 72 may be a useful example to contrast our findings. In this
structure, odor-specific information is stored spatio-temporally, but apparently all
neurons take part in expressing the code for each odor. Our simulation networks
can also be constructed to encode information relating to multiple tasks,' 3 6 but the
noise-induced changes in the network represent an informational abstraction that
goes beyond the information need specifically to perform well on previously learned
tasks. Therefore, if our computer simulations of connectionist neural networks have
analogs in biological systems, the understanding of synaptic modification and the
..;ormation that the synapses contain cannot be deciphered simply by examin-

ing the synapses themselves as they relate to only one task. In their studies of
Mauthner neurons, Fabetr, Korn, and Lin 5 7 raise the related caveat, but for dif-
ferent reasons, that ".. .although it is possible to derive generalized rules of the
operation of synapses, their variants may exert a major role in shaping the behav-
ior of complex circuits."

Analogous problems as those described above and in the preceding two subsec-
tiots may have beset Lashley10 7 whose unsuccessful attempts to identify the locus
of stored memories (engrams) in the cortex have been more inspiring and illuminat-
ing, at least to us, than were he to have found them. It is interesting that much of
neuroscience has followed the same course as Lashley. But now the search has been
on the cellular level in attempting to identify behavioral phenomena in terms of
single synapses and single neurons. It is also interesting that Pavlov, before Lash-
ley, was apparently discontent with the possibility that learning could be localized
to particular areas of the cortex since learning persisted in his animals even after
they had suffered brain damage (seeiBoakes, 20 pp. 127-128).

6.4 "FUZZY" CONTROL

Thus, the "control" we seek to define for the physiological and neurohumoral as-
pects of the nervous system is oblique and emergent rather than being crisply
Euclidean in postulating particular causes and effects as would be expected of re-
flexes. One feature of such emergence is that there may be many ways to do the
same thing, and even gradations between these ways. We know, for example, that
under some conditions, removal of a neuron from acting in a motor pattern can be
compensated by shifts in the activity of other neurons. 13 9 Redundancy, arising from
information sharing among convergent pathways, compensates for error or failure
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in some of its components, even if these components originally generated strong
control over the other members of the coactive group. Are neurohumoral systems
equally redundant, or does each of the ever-growing number neurotransmitters be-
ing identified daily have a unique task? Our own work leans heavily toward the
first of these possibilities.1 74 In the same sense that there may be "lazy" synapses
in neural networks,136 whose presence is required only under some conditions, are
there "lazy" or even unnecessary transmitters? Some of what we see in a given
system may represent baggage of evolutionary or developmental processes. This,
however, provides for yet another form of variation that permits possible adventi-
tious incorporation into further evolution or behavior.

6.5 IS OUR VIEW HOLISTIC?

No. Being concerned with mechanisms that generate global behavior is not nec-
essarily being holistic. In our approach, global behavior depends on local rules
followed by individuals acting within a large group. It is these rules that we seek
to identify, though there may be different rules that relate to global behavior di-
rectly. Even in simple processes such as building of sand-grain mounds13 and affine
transformations,' 6 the global consequences of local behavior are not predictable.
Nevertheless, emergent fifiction need not be a property of large groups of neurons.

It is interesting, however, that one of the best examples of work in artificial
intelligence in many decades employed a top-down analysis in which a principle
obtained from studies on the behavior of whole animals was used to gain insight into
how that behavior might have emerged from individual neuronal units. The work we
refer to is Klopf's97 drive-reinforcement model of associative learning, which extends
Hebb's 74 rule to account for Pavlovian conditioning. Hebb's rule states that, 'When
an axon of cell A is near enough to excite cell B and repeatedly and persistently
takes part in firing it, some growth or metabolic change takes place in one or both
cells such that A 's efficiency as one of the cells firing B is increased." Before Klopf's
model, computer simulations of Hebb's rule in simple networks were not successful
in demonstrating learning that mimicked findings in biological systems.

Hebb's rule may be interpreted ps a three-cell network,' 43 one input cell for the
CS and one input cell for the UCS, both of which synapse on a common follower
cell (cell B). Klopf9 7 made the following crucial modifications to the rule to make
it work in such a simple system: (1) Temporal delay was added between the onset
of the CS and UCS. (2) Synaptic modification was made proportional to the rate
of change in the CS and UCS. (3) The follower cell (B) itself expressed a form of
behavior analogous to tendencies that may be observed in whole animals: Whole
animals seek to optimize some quality of their environment, such as avoiding pain
and enhancing pleasure. Klopf96 made the simple, but crucial analogous assumption
that cells tend to optimize excitation and reduce inhibition. Additionally, to account
for excitation and inhibition, the follower cell received excitatory and inhibitory
terminals in its CS input pathway.
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The methodology for training the network is the same as for training the whole
animal. In each training trial, a pulse is presented to the CS input, which initially
produces little effect, and after a short delay, a pulse is presented to the UCS input.
The only parameter that is arbitrarily set in the model is the constant for the
rate of learning. Amazingly, training-induced changes in the synaptic effect of the
CS input on the follower cell reproduced all of the known Pavlovian conditioning
phenomena in experimental animals and in humans (e.g., backward conditioning,
CS alone, UCS alone, trace conditioning, second-order conditioning, foreshadowing,
blocking, conditioned inhibition, etc.).

The model has now been extended to account for instrumental conditioning. 131

The work also made progress in resolving the long-standing debate relating to the
theoretical relationship between Pavlovian and instrumental conditioning since the
instrumental conditioning effects in the model emerge from Pavlovian condition-
ing. Thus, computational methods may have resolved what psychological debate
and experimentation in biological systems have not been able to do. The studies
discussed in Section 8 pursue the same rationale of using simple rules to lead to
understanding of global effects.

7. DOES A THEORY EXIST?
At least three important principles have emerged from dynamical systems studies
that are important to biologists: (1) The notion that distributed networks can
generate attractors. (2) A considerable amount of information about a system can
be gained from bifurcation analysis. And (3) an understanding of the dynamics of
a system can be obtained from the phase-space geometry of such attractors. By
these methods, it is possible to discover much about a system withouL having to
resort to the difficult if not impossible task of uncovering the sets of equations that
actually run the system.

A long history of work has developed these ideas, from Poincar6 to Lorenz,
Crutchfield, Farmer, Packard, R6ssleZ, Ruelle, Takens, Swinney, Shaw, Yorke, and
others of the many recent contributors to the knowledge of nonlinear dynamics.118 3

There are many theorems in the field of nonlinear dynamics, and there are many
discussions of how to handle the nonlinearities, 71'7 2 ,' 70 beautiful demonstrations
of attractor topologies, bifurcations, and stability analyses, when these are in fact
available. As important as these are, they do not constitute a unified theory, at
least not as it might apply to brain function, though Bak and coworkers suggest
that their mathematics or models of self-organizing criticalitiesl,11,1 2 , 13 ,lS13 1,1 8 7

which apparently account well for many physical and biological phenomena, may
provide an encompassing dynamical theory.

One way to get around the theoretical problems, as is often suggested by physi-
ologists and non-physiologists alike, is to perform computer simulations on systems
whose state space is completely defined and parameterized, that is, to determine all
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of the connections between neurons, membrane properties, neurotransmitters. firing
thresholds, and the like. However, one look at the complexity of the connections and
at the wide divergence and convergence occurring in even "simple" systems should
provide convincing evidence that this approach is hopeless. 35 ',39 '174'1 95 Moreover,
as discussed above, the reductionist neurocircuits that have been developed over
the years to account for behaviors are but a caricature of the actual '-network" that
generate the behaviors in intact animals.

The possibility might also be suggested that insight into the integrative prin-
ciples might be obtained from the mathematics describing the biological systernm.
This also seems an unlikely possibility at present, even in relatively 'niali systems.
Even in well-defined experimental systems, the first evi']cnce of dynamical states
and their bifurcations came from direct observaLions. One such example is the
Belousov-Zhabotinsky reaction which consists of about 30 chemical constituents in
which malonic acid is oxidized in an acidic bromate solution.163'164 While it may
be possible to define the v'.rious reactant species and list the reactions, it has not
been possible, to our knowledge, to predict the dynamics of the system using the
mathematics of the reactions. Another example is the demonstration of different
dynamical states in yeast glycolysis.1 22 As yet another example. near the turn of
the century, Duffing extensively studied damped-driven oscillators, yet the full force
of the dynamics in his simple model system was not uncovered until recently using
computer simulations.16 3

,
1

6
4 Lorenz's landmark paper"12 showing the first instance

of persistent chaos in a simple mathematical model of fluid convection was found
accidentally in computer simulations, not theory.

Finally, even the application of extant dynamical systems tools to time series
of experimental data provides little recourse. 133 These tools have largely been de-
veloped using simple models whose responses can be generated sufficiently long to
obtain an indication of their dynamics. Biological responses, by contrast, are often
extremely short lived. For example. chewing and swallowing behaviors in humans
as in Pleurobranchaea may be generated by robust attractors. but so few cycles
are generated that characterization of their dynamics, whether they be limit-cycle
or chaotic attractors, is not possible. Even in ideal systems. a certain amount of
guess-work needs to be done. For example, the Grassberger-Procaccia algorithm
can significantly ov,.estimate the Attractor dimension of limit cycles and under-
estimate it for chaotic systems, particularly as the dimension increases, even for
model systems such as the R6ssler hyperchaos.161

The positive side of all of these problems is that biology stands on an exciting
albeit difficult threshold of growth in theories and concepts. And it is biology that
will force further development of dynamical tools. The work of Ellner and coworkers
on nonparametric methods to calculate Lyapunov exponents is an example. 54 55 ' 56
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8. COMPUTER SIMULATIONS: MINIMAL MULTIFUNCTIONAL
NETWORKS
Computational analogies may provide insight where theory is lacking. Lorenz's 112

work on convection provides an excellent example of how computer simulations
may spark insight into new methods for handling complex sysLein. The i work uf
Klopf and coworkers, 97

,
13 1 which was discussed above under Reductionism, is an-

other example in which computational methods have proved decisive in addressing
an important problem in the theory of learning. In Lorenz's case, the outcome was
unexpected. In Klopf's case, the outcome was planned because of the equivalence
of the statement of drive reinforcement at both the unit and global levels. Both
of these examples show that certain statements or assumptions about interacting
systems can be used to address complex behavior through computational methods
without having first to develop a proved theory about the global system. Put dif-
ferently, given certain assumptions about local events, it may be possible to allow
the system to generate itself. In the same way, we discuss here four topics that

may be addressable computationally and which may eventually prove beneficial in
understanding some of the complexities of biological organization.

8.1 NONLINEARITIES AND BIFURCATIONS IN SIMPLE NETWORK
ARCHITECTURES

As we have referred to repeatedly above, we do not yet understand the functional
meaning of convergence and divergence beyond the notion of reflexes,136' 139" 74

or as Sperry put it,17" of the "three-bodies problem." In studies of associative
learning and motor pattern generator, there is as much need now for a new language
to handle the emergent properties arising from convergence as there was fifteen
years ago.143 But we can point at least to two small interrelated advancements:
identification of the nonlinear interactions that arise from network architectures,
and the identification of architectures that permit bifurcations to arise from such
interactions. The discussion below uses several model systems to clarify what we
mean, and to inquire into the problem of continuous versus discrete processes in
neuronal activity.

8.1.1 NONLINEARITY AND BIFURCATION IN MODEL SYSTEMS Rissler and logistic.
Nonlinearities are easy to see in simple models such as the R.6ssler system162 of
coupled ordinary differential equations that generate complex chaotic dynamics:

dx _ dy dz
dt dt dt

where a, b, and c are constants. Here X is a function of Y and Z, Y is a function of
X and itself, and Z is a nonlinear function of itself and X. Each of these variables
is expressed nonlinearly through the others. The logistic equation, Xn+l = R(1 -
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Xn)Xn, is an even simpler example, where the new value on the left is generated by
the nonlinear drive of the previous value on the right (initialized between 0 and 1).
and is then reintroduced into the system to generate the subsequent number. For
values of the constant R between 0 and about 3.55, the process of nonlinear action
followed by recursive folding back into the equation produces periodic sequences of
numbers, but for R greater than 3.55, the system generates chaotic sequences.123

Successive, linear adjustments to a constant such as R may produce only minor
changes in the system over a large portion of R's allowable range. But at critical
points, very small alterations in R produce nonlinear shifts (bifurcations) in the
sequence of numbers. At low R-scale resolutions, regions are observed at which
only chaos appears to occur. By expanding the R-scale, one observes that chaotic
regions contain periodic regimes.

Bifurcation in Hodgkin-Huxley membrane. Teresa Chay's29 seminal paper ex-
amined a three-variable Hodgkin-Huxley membrane precisely in this way. The time
variation of voltage in the model is given by

dV . 3 V 4 C C

dt : gtmh:(Vt- V) + gg1 .n4 (VK.- V) + g +,c T-+ (VK- t") + g9L(V, - ,').

I: mixed inward currents (sodium, calcium). K,V: voltage-sensitive potassium chan-
nel. C: internal calcium concentration. K,C: calcium-sensitive potassium current. L:
leakage. n: probability of opening K,V. m,h: probabilities of activation, inhibition.
g*: maximal conductance divided by capacitance.

The three variables in the system are (1) membrane potential (V); (2) n. the
probability of opening the voltage-dependent potassium channel: and (3) intra-
cellular concentration of calcium (C). Intracellular calcium is voltage-dependent.
as are sodium, one of the potassium channels, n, m, and h. It rpan be easily seen

A B

0 Exitation
* rIhibition

S sequestration of 4
b Z C intracellular calcium

FIGURE 4 Cartoon of "minimal" neurocircuit transpositions of the three-variable
Rossler system of coupled differential equations (A) and of the Chay's three-variable
Hodgkin-Huxley membrane (B). See text.
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mathematically that all of these variables affect one another through voltage (as a
consequence of their effects on currents), and that the system of such interactions
is highly nonlinear, although examination of the equations would not necessarily
give immediate insight into which parameters to use to control bifurcations. The
bifurcation parameter is the calcium-dependent potassium conductance gK.c, and,
as described above for the logistic equation. the membrane produces many different
firing patterns when this conductance was systematically changed.

8.1.2 RELATIONSHIP BETWEEN BIFURCATION DYNAMICS AND NETWORK ARCHI-
TECTURES. To illustrate the difliculties encountered in attempting to understand
the dynanmical capabilities of network architectures, and the direction we have taken
in some of our computer studies, consider the (overly) simplified cartoons in Fig-
tire 4 that transpose the R6ssler system and the Chay membrane into "realistic"
analogs of neuronal networks. "Realistic" might include voltage-sensitive ion chan-
nels, calcium-dependent ones, transmitter release dynamics, transmitter re-uptake,
and second messenger systems, and other processes one might want to include in
an experimental system.

Given tonic excitatory input to X in Figure 4(a), and making X capable of
post-inhibitory rebound, it may be possible for X and Y, and X and Z, to oscillate
in opposition if there is sufficient accormnodation in the firing of Z and/or Y. Figure
4(b) shows a network cartoon of a subset of the variables in the Chay membrane.
Given Chay's simulations, it might be predicted that the synapse of Kca onto V
would provide access to bifurcation dynamics. The nonlinearities in the Rbssler and

Chay systems are easily identifiable in the differential equations that compose them.
And it is possible to see how the calcium-dependent potassium conductance can
influence the dynamics of the Chay model. But it is considerably more difficult to
identify analogous nonlinearities and bifurcation conditions in neuronal networks.
It. has long been established that synaptic activation of neurons leads to nonlinear
responses because of the firing threshold in the driven neuron. It is also known how
to simulate individual synapses using digital integration, by describing the kinetics
mathematically, or by examining nonlinear interactions between different types of
synapses.9" But the dynamical implications of different network architectures and
of the synapse characteristics that "affect the dynamics of regenerative electrical
activity of neurons in these networks are problems that remain largely untapped.

Along this line, present efforts in our laboratory are aimed at understanding
what types of converging and diverging centers in minimal networks are required
for bifurcations to occur. In the same way as Chay used the calcium-dependent
potassium conductance to control the bifurcations, our efforts are to determine
whether synaptic strengths can also be used as bifurcation parameters. The problem
facing us in dealing with the biological system is much more difficult than that which
faced Chay because: (1) our system has many more degrees of freedom. (2) Our
system is not as smoothly continuous as the Hodgkin-Huxley membrane; i.e., the
membrane responses may seem continuous, but cells usually receive information
in short pulses or bursts. (3) There are no previous network examples for us to
follow in which bifurcation have been demonstrated. Interestingly, the types of
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convergence centers that have proved capable of bifurcating into variable activity
in our preliminary computer simulations. are ones having similar structures as the
one shown in Figure 4(b).

As our knowledge grows of the connectivity among the BU'Ns and of their con-
nections with other neuronal groups, we shall construct computer simulations of net-
works having increasing sizes. We shall then progressively introduce the effects of the
many enn-erging neurotransmitter systems. Additionally, by ii..: ,,menting early
behavioral evidence of synaptic competition (luring learning in Pleurobranchaea,143

and the evidence for synaptic competition in mammalian cortex.1'29 we expect to
see our networks remodel their connections overtime. Interactive groups may ac-
tually grow or shrink inl time: large populations may split into subsets: the spatial
boundaries between coactive groups may move in time: and network architectures
may emerge that affect, the amount of variation occurring in the network.

8.1.3 CONTINUOUS VS. DISCRETE PROCESSES. The Rdssler and Chay model are
both three-variable systenms. as required of any continuous bounded system that is
capable of generating chaos. We summarized the reasons behind the need for three
variables using mixing of trajectories in three-space and an examination of Lya-
punov exponents in subsection 3.5.2. By contrast, discrete processes can generate
chaos in one dimension, as-in the case of the logistic equation. and coupled discrete
processes can generate chaos in1 two-space, as shown by the H~non system, where
X,+, = laX2 + Yn and 1',+1 = bX .78 Recall also that the issue is not whether
a system generates chaos, but its ability to exhibit both simple and complex be-
haviors, depending on its bifurcations conditions arising from simple quantitative
alterations rather than from qualitative changes in network structure. Moreover, if
the bifurcation parameter is the driving frequency of an input signal, it is not nec-
essary even for quantitative changes to occur in the network for simple and complex
dynamics to appear.

The difference between continuous and discrete processes is of significance to
neurobiologists. The neural networks studies of Mpitsos and Burton13 6 indicate
that when signals between networks are chaotic discrete processes. simple networks
are able to perform difficult tasks on these signals that would otherwise require
more complex networks to perform-if the mode of transmission used continuous
periodic or continuous chaotic processes. Continuous processes are used in neural
integration,'I but the usual mode of information transfer is through trains of action
potentials. Trains of action potentials in pacemaker firing cells are generated by
continuous fluctuations in membrane potentials and in the dynamics of ionic species.
Examples may be found in computer simulations of the parabolic burster neuron
R, 5 in .4plysza.25 and in the Chay model described above. The information in these
spike trains, though generated by continuous processes, is in a pulse code. Therefore,
there are a number of questions that need examination. For example, is there an
informational difference between the dynamics of spike trains by comparison to the
information contained in the continuous membrane processes that generate them?
What happens in postsynaptic cells when they receive such spike trains, and when
are we to consider the dynamics in the postsynaptic cells as continuous processes
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or analogs of discrete processes? The membrane potentials of these follower cells
may appear continuous, but they are driven by discontinuous input events.

The differences between discrete and continuous peocesses pose problems in
numerical analyses. Experimental data usually consists of the time series of one
or several dependent variables, but the methods provide little knowledge of the
number of dependent variables that actually drive the system. Numerical methods
provide some help. For example, it is possible to conduct phase-space analyses that
give information about the topological dimension of attractors and about the num-
ber of dependent variables (embedding space) that may be involved in generating
the attractors. 137144 The evidence provides some justification supporting chaotic
attractors and low-dimensional embedding space.

However, some of the calculated attractor dimensions were lower than two,
posing some difficulties in interpretation of what the dynamics is. Continuous sys-
tems must have at least three Lyapunov exponents; there must be at least two
non-negative ones, one being positive, as required for chaos, and one having zero
value, as required by Haken's theorem (subsection 3.3.2). Given two non-negative
exponents, calculations using the Kaplan-Yorke conjecture should be expected that
the lowest attractor dimension for continuous chaotic systems be greater than two
(examples are given in Andrade et al.6 ; Wolf"9 '). One-variable discrete processes,
such as the logistic equat.ion, have dimensions less than 1. Two-variable discrete
processes have dimensions between one and two; our own estimate of the Henn sys-
tem gives dimension of about 1.36. Knowing the mathematical representation of a
system allows one to place such numbers in appropriate context, but experimental
.ta leaves numerical results ambiguous. Do we assume that attractor dimensions

less then two are coupled discrete processes or is it a problem with the analytical
methods? Of the latter possibility, the available tools, whether using time series of
a single variable or all variables, calculation of attractor dimensions are difficult to
obtain even for model systems. 6

Answers to questions as the one given above are necessary because they provide
ri indication about how information is processed and encoded. We are presently

addressing them using numerical analyses of data from computer simulations of
membrane patches and of responses of cells in networks where we have access to all
parameters and variables of the system. Comparison of analyses on the data from
measurements of continuous variables and from spike trains may yield some insight
into implications relating to continuous and discrete processes.

8.2 RESPONSE OPTIMIZATION, ENERGY GRADIENTS, AND ATTRACTORS
IN BIOLOGICAL NETWORKS

8.2.1 ATTRACTORS, FROM SEA SLUGS TO BEES Real' 59 has shown recently that
bees are able to adjust their behavior so as to optimize the use of food resources.
Whether or not this involves gradients and attractors has not been addressed. The
idea is consistent with the possibility that biological networks (and biological sys-
tems generally) may exhibit behavior that tends to minimize some gradient factor
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(as error or energy) through the ability of attractors to dissipate energy.13 4"135 At-
tractors (see subsection 3.4) pull in any phase-space trajectory that falls within their
basin of attraction. Thus, for example, in limit cycles, externally applied perturba-
tions move the trajectory of the system away from the limit set. but if the state of
the trajectory remains within the attractor's basin of insets, the trajectory will fall
asymptotically back into the limit set. Chaotic attractors also attract nearby states
but dissipate perturbations over their entire surface. We might say that attractors
minimize energy or error.135 Put differently, attractors optimize the match between
their attracting set and activity that falls near it. In either case. the action may be
consider a minimization process. On the behavioral level, bees are able to control
their foraging techniques so as to optimize the use of food resources. 159

8.2.2 COMPARISON THROUGH ANALOGY IN PRINCIPLES, NOT IN IDENTITY OF
MECHANISMS The potential consequences of the identity between attractors and
optimization are rather interesting. Consider the following situations. In attempting
to simplify computer simulations, it is often difficult to determine exactly where to
limit the characterization of the biology. For example, the connectionist methods of
error back-propagation are usually faulted because of their obvious non-biological
nature. But the answers that come from the use of such networks depends on the
principles that are actually being simulated. The major driving element of error
back-propagation is that the system must follow a negative error gradient between
a teacher function and the output of the system.' 65 If the question being addressed
has to do with the principle of error reduction, rather than, sav, what second mes-
sengers might be involved in a cellular process, or how feedback actually occurs in
a real nervous system, the back-propagation method might give some insight into
how gradient-seeking systems store information in their distributed elements.

Response thresholds. Following this rationale, Mpitsos and Burton136 obtained
a number of results that might have relevance to biological systems. They found, for
example, that the computational capabilities of networks are severely limited when
only trainable synaptic strengths are used. Adding trainable thresholds significantly
expands the computational power of the networks. In invertebrate learning studies,
thresholds (as might be inferred from membrane changes in postsynaptic cells) have
either not been observed at the cellu'lar level or have not been generally attended
to.1 46 Studies on long-term potentiation (LTP) in rats have. however, provided
evidence implicating response thresholds through changes in synaptically induced
changes in the ratio of excitation and inhibition rather than changes in membrane
impedance.17,2' Heretofore, the methods used to test LTP have not focused on
assessing the computational implications of threshold adjustments, nor the technical
conditions to extend the findings, but it would be extremely interesting to determine
whether adjustments in the ratio of excitation to inhibition were set differently
for each cell, as might occur in gradient descent adjustments in thresholds during
learning in neural networks.

Network size may be self-limiting. An unexpected finding in the studies of Mpit-
sos and Burton136 was that increasing the number of neurons in a hidden layer or
interneuronal layer beyond a certain point slows and eventually causes the system
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to cease learning; i.e., group size may be self-limiting. Limitation of group size has
been enforced algorithmically in simulations of mammalian cortex through synap-
tic competition and inhibitory synapses.52,1'5 It is also conceivable, however, that
group size may be additionally limited by the gradient tendencies of attractors. If
the findings of Mpitsos and Burton hold biologically, the slower organizational times
of large networks may be superseded by smaller subsets of neurons as they form
attractors. Once sufficiently formed, the attractors themselves may restrict group
size, partly by their gradient processes, and partly by learning-related synaptic
competition. To our knowledge, the network-forming aspects of synaptic competi-
tion have been viewed only at the level of neuronal trophic factors and whether or
not activity occurs. What we are attempting to point out here is that the network
not only generates activity, but that the dynamics of this activity may affect the
characteristics of the network architecture.

A similar distinction between activity and dynamics may be raised in studies
of motor pattern switching. In a traditional sense, switching between patterns of
activity require some network change or the introduction of activity in a controlling
neuron. 39 We do not deny this possibility, but add that the notion of bifurcation
raises the discussion from the level of activity alone to a level involving dynamical
processes. Using John's terminology,"2 the former is a "switchboard" effect relating
to particular neuron(s),-whereas the latter is an abstraction of the self-organizing
activity in neurons, and quite likely may not be identifiable in network structure, 139

although some identifiable structural indices may be obtainable as discussed for the
studies of Figure 4.

Metaknowledge and lazy synapses. Metaknowledge represents that ability of
networks to store different forms of information.23 We discussed it above in dealing
with reductionism (subsection 6.3.4), and we believe that it may be a consequence of
gradient tendencies. Our computational studies also found that although networks
set their synaptic weights and thresholds at optimum levels, many of the synaptic
weights produce little effect when removed from the network; i.e., they are "lazy."
Mpitsos and Burton136 discuss a number of uses for such synapses. One of the most
interesting possibilities comes from somewhat different studies by Warren'1 6 who
showed that certain synapses may be deleted after training without significantly
affecting network performance on'a previously learned task, but networks were
unable to learn the task if they started with the reduced number of synapses in the
first place. This poses interesting problems to biologists since weak connections are
often observed between the interactive components of their experimental systems.
The tendency in the past has been to dismiss such connections, or to presume
that they would be "pruned" away if not used. Our findings along with Warren's
indicate that these synapses may be crucial for learning new tasks. By analogy to
computers, they might be considered as temporary registers that permit gradient
descent, but once gradient descent has been reached, they are no longer needed for
that task.
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8.3 LOCAL ERROR MINIMA IN BIOLOGICAL ADAPTATION

The idea that a system tends to optimize its behavior has a somewhat different ex-
pression in biological systems than it might have in computer simulations of connec-
tionist neural networks. With enough time and stable environmental conditions, we
can envision that evolutionary competition between organisms will produce changes
that best adapt the species to the environment. One might think of the process as
reaching an absolute error minimum between the response of the organism and
the best possible response under the imposed conditions. Any response that is not
optimal represents a local minimum. In neural networks, methods have been de-
veloped (see subsection 3.5.3) to avoid local minima using, for example, simulated
annealing 93 and time-invariant noise algorithms (TINA). 23 Simulated annealing
usually involves exponential decay of noise over time. TINA adjusts noise as a
function of the amount of error that is produced when a system responds to its
input stimuli. This method. however, was chosen only as a vehicle to demonstrate
the idea of TINA. Other methods, not necessarily directly related to error feedback,
may also be used that retain time invariance. For example, our present attempts
to implement TINA in networks consisting of neurons having biologically realis-
tic characteristics is to adjust the probabilistic release of transmitter 99 or to use
short-term activity-dependent learning rules such as sensitization146 to maintain
the flow in a given part orthe network. Our goal is to assign certain facilitatory
responses to classes of neurons, and then to allow the actual pathway to emerge
dynamically. Low-error would be represented by activity recurring through a partic-
ular part of the network. As error increases, diffusely distributed feedback onto the
network would disrupt such preferentially frequented pathways, permitting others
to emerge. If these new pathways lead to low error, feedback decreases, allowing the
flow through the pathway to continue. If attractors self-organize, the preferential
pathways would then be further entrenched, because, as discussed above, the basin
of insets to the attractor itself may represent an energy or error-minim p process.

This process does not require that the tendency to follow a gradient actually
reach an optimal minimum, or, equivalently, that the attractor be spatio-temporally
a robust, stable structure. Biologically, in both the daily behavior of organisms and
in their evolutionary succession, local jninima are extremely important in generating
adaptive responses. Whatever works is sufficient, whether the response is optimal
or not. Thus, our notion of an adaptive system is one that can generate different
minima that can be addressed rapidly, and exited rapidly if they do not meet the
need. Indeed, we believe that it is from the ability to generate many local minima
that multibehavioral networks may have evolved.

Part of the understanding about the generation of local minima will be to see
how multibehavioral networks generate different attractors in computer simulations.
Transitions between different attractors may yield labile intermediate forms that
only partially resemble more stable ones. The most difficult problem that we face
here is to determine how best to visualize temporal activity graphically for spike
trains.137,144 Continuous non-spiking processes pose less of a problem.' Part of the
answer may also come from an understanding of spatio-temporal dynamics.
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8.4 VISUALIZATION OF SPATIO-TEMPORAL DYNAMICS

The more we study biology, the more it seems that we must somehow leave it to
gain a feel for what may be happening there. Put simply, biological systems are
too complex and uncontrollable even to perform experiments as those represented
by Figure 4. We must imbue these simulation networks with as much biological
information as needed to obtain activity that somehow resembls the activity of
the biological system. But complete state-space parameterization of the biological
system is beyond hope, as one glimpse of the complexity in Figures 2 and 3 will
show. At the level at which we can attribute realistic biological characteristics to a
network, the system becomes intractable even for simple analyses of steady states
(see example analysis of a simple model system in Andrade et al.6).

Given the growing power of computer graphics and the increasingly easier ac-
cess to supercomputers, the recourse for biologists interested in the emergence of
group dynamics is to conduct the type of experiments shown in Figure 4. and. es-
pecially, to visualize the spatio-temporal flow of activity in large-scale simulations
involving many interacting units. An understanding of such spatio-temporal flows
is, we believe, one of the central questions facing neuroscience. Walter Freeman and
coworkers were perhaps the first to begin a detailed account of spatially distributed
recordings in their studies of rabbit olfactory bulb (e.g., see review in Skarda and
Freeman' 72). But even 'in these studies, the analysis of the temporal flow is of the
time series of single recording sites. Perhaps the major lesson in dynamical systems
work over the decade has been the fact that much can be learned about the activ-
ity of a system by the analysis of its phase-space geometry. Up to four variables
can be analyzed simultaneously using time series analysis (e.g., see Figures 8-11 in
Andrade et al.,' and Figure 13 in Mpitsos and Burton136 ). We need to do the same
for many variables, both spatially and temporally.

By such methods it may be possible to examine the possibility of limit cycles.
chaotic attractors, SOCs and turbulence, the coexistence of multiple attractors.
movement of these attractors spatially, and possibly even their blending into one
another. It may also be possible to determine how particular circuit structures
emerge, how variability appears controlled by particular circuit characteristics. In
the long term it will be important toask how such structures are affected by system-
wide factors. If we are to believe our neurochemical findings, it is quite likely that
bifurcation parameters may be more accurately defined as being distributed over
a large number of cells rather than, for example, in the conductance modification
of a single cell. The first possibility may explain the fact that some systems are
relatively insensitive to changes in only a few of their components.

9 CONCLUSION
In answer to the title of this paper, we have a, ually said little about what sea
slugs can tell us explicitly about tlbe neurointegration of specific human movement.
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But we believe that the findings tell us considerably about what must be addressed
in order to gain a unified perspective of biological integration that might eventually
affect how we view human movement. WVe understand that much has been said ap-
propriately by others about coordination of limbs in invertebrates and vertebrates.
the rightful importance of FAPs. and selective contil of individual neurotransmit-
ters on pattern generation and in the formation of network structure, and that such
findings may be applicable to human motor behavior. Perhaps most of the time all
of these studies provide the best answers, as most of the time Newtonian physics
provides the right answers in daily engineering problems. Perhaps also. the neuroin-
tegrative processes in Pleurobranchaea and .,plysza follow the same predictabilities
most of the time.

The instances that are not explainable by traditional neurocircuit perspectives
might be dismissed as biological aberrance. Al1t -rnatively, owing to the fact that the
animal seems to function well enough with them. they may" be pursued as being of
adaptive significance. \Ve have followed the latter route, and have been forced into
a perspective that is more statistical mechanical and dynamical than classically
"'switchboard." Lorenz"1 3 voiced the long-held view that all biological information
is stored in structure. WVe hardly disagree with that. But the question is. how
do we read that information, and is much of it redundant and even of nonsense
or accidental value? The latter possibilities may actually provide certain adaptive
value adventitiously in ever changing and unpredictable environments. In reaching
a new theoretical perspective that addresses these issues. our view is that there are
two levels of solution: the special case, relating to the switchboard neurocircuit.
and the general solution, that must be reducible to the special case but must also
provide a general theoretical foundation that is extensible to many other cases.

The shift to dynamics, or at least away from answering all questions by using
reflexes, marks a shift away from mechanism to organization. Although each bi-
ological level of organization may express the dynamics in its own processes. the
dynamical principles may be applicable to all levels of organization. 1he central
question in all of these systems is "How does the individual influence the group.
and, in turn, how does the group influence the actions of the individual?" We have
tried as much as possible to couch our ideas on biological findings, though much
more data needs to be gathered (and're-gathered) before we feel more comfortable.
If what we have discussed is accurate, then, as Barbara McClintock envisioned. "We
are going to have a new realization of the relationship of things to each other."'
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Mapping from Speech Acoustics to Tongue
Dorsum Movement: An Application of a
Multilayer Perceptron

INTRODUCTION
In this lecture we will illustrate the application of nonlinear neural network tech-
niques to a large-scale problem of some importance. While the strategies and meth-
ods we adopted may not be exactly the correct approach for other situations, we
suggest that a detailed examination of how one complex, nonlinear problem was
solved will facilitate the search for good solutions to other similar problems. The
focus will be on how we managed to reach a satisfactory result with the technique,
rather than on the theoretical benefits of the method.

The problem explored in this paper is that of finding a map from speech acous-
tics to the movement of the speech articulators. If we were successful in this task.
we could then produce a simulated X-ray of the movements of the tongue during
speech. This would be a substantial aid to the deaf since such a display would per-
mit a kind of "lip reading" of the tongue. It would also benefit the field of speech
therapy, where knowledge of tongue movements would help to monitor and guide
treatment. As an instantiation of the problem, we have chosen to map to the vertical
movement of the tongue dorsum, which we define as a point on the midline upper
surface of the tongue 30 mm behind the tip-a point which generally touches the
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roof of the mouth near the posterior boundary of the hard palate when a speaker
forms consonants like /k/ and /g/.

We also view our research as a first step toward a device that will recognize
iiatural, continuous speech produced at different rates by different speakers. Our
approach is based on a substantial body of theoretical'' 6 and experimental 3'"10 11.1

evidence that suggests people perceive speech by extracting from the acoustic signal
information regarding the vocal tract gestures that were used to produ,-e the speech.
According to this approach all sounds in a particular language can be represented
by a unique pattern of gestural units. For example, the difference between /k/ and
/g/ is that the velar closing gesture is accompanied by a glottal adduction in /g/ but
not in /k/. If we could detect the motion of the tongue dorsum during speech. we
would be able to identify the occurrence of a velar closure gesture, and would have
developed a system that might be extended to other gestures. This in turn would
eventually enable us to detect the unique combination of gestures that specify each
utterance in the language. One advantage of gestural units for speech recognition
is that gestures are relatively invariant across speaking rate.23 For a more detailed
discussion of the mapping problem, as well as its implications for recognizing speech
gestures, see Papcun et al."'

We chose to attack the problem with neural networks because we expected the
relationship between acoustics and tongue positions to be extremely complex. and
because previous attempts to map from speech acoustics to vocal tract position
by analyticl or other techniques2','- have not been particularly successful. Also,
multilayer perceptrons (MLP) have been used successfully to map from speech
acoustics to phonemes 4'2 4 and to words. 7" 7 Therefore, we elected to use a feed-
forward, fully interconnected MLP to attempt to map from speech acoustics to the
underlying motion of the articulators that produced that speech.

INPUT AND OUTPUT

Data were collected at the University of Wisconsin's Waisman Center's X-ray mi-
crobeam facility. The microbeam tracked the movement of a 2.5 mm gold pellet
attached to the tongue dorsum during natural speech. The acoustic signal was also
simultaneously recorded. We recorded three male speakers repeating monosyllabic
words three times each in lists of eight words. Each list formed a record and took
20 sec to complete. The words contained one of five vowels: /u/ as in hud, /ae/ is
in had. /I/ as in hid, /i/ as in he, or /o/ as in hoe. These were preceded either by a
glottal fricative /h/, an unvoiced velar stop /k/, or an unvoiced alveolar stop /t/.
After the vowel, the words were ended either by an unvoiced velar /k/, a /ks/, or by
a voiced alveolar /d/. Words beginning with /h/ had no final consonant. Examples
of the words are he, cud, toke, tucks, and tax. These words were selected because
they featured velar stops in a variety of vowel contexts.

As in any use of neural network techniques, a crucial decision was how to
represent the input. A good representation contains the necessary information for a
successlul map and eliminates unnecessary, confusing, or irrelevant information. The
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speech signal contains large amounts of this latter type of information, such a'- that
related to the loudness of the speech signal. and tile sex and identity of the speaker.
However. as usual in the application of neural net-works, we do not know ,.xactlv
what aspect of the input will contribute to a successful iiap---if we did have rius
exact knowiedge, we would probably not have slected a neural network appro,:ch.
but rather would have used a more struictuired artificial Intelligence technique.

The representation problem can be su nitnarized as a choice betweetn tIwO iiff'r-
ent philosophical approaches: (1) the know-nothing approach and (2) the know-it-all
approach. If we had followed the first, we would have presented the speech .i-tcnal
in something close to its raw form and claimed that the network would ad ii.-t its
weights to ignore irrelevant information: if we had adopted the second approach. we
would have thrown out everything judged to be irrelevant and let the network ex-
amine only a highly filtered signal that highliglhted the supposedly critical features.
[he advantage of t lie first approach is t hat we are fairly certain to have included t he
necessary information, while the disadvantage is that all the excess input will slow
the finding of a solution or will permit a solution that is idiosyncratic to tile training
set. This will cause a failure to generalize successfully. 'file advantages of tile .-,tond
approach are that it is likely the features we have highlighted will actually be used
by the net. thus aiding generalization. Moreover. we could expect the reduced size
and complexity of the net-to result in faster training. 'ile disadvantages are ihal
faulty filtering of the speech will exclude key information and the net will fail to
learn or will learn a solution that will fail to generalize. Our strategy was to lean
to the know-nothing approach, but to filter the speech in ways that are well known
to be done hy tihe peripheral auditory svst em -i.e., transform short titne S,(,1ýl0ntts
to the frequency domain. and represent the spectral energy in log scales iI t 1ib,,
power (db scale) and frequency (bark scale).

The acoustic signal was sampled at 10000 liz. low pass filtered at 5000r) liz.
and adjusted to a mean of 0 to remove ani dc bias. It was then segitentited into
overlapping 12.8 msec sections, passed through a Welch window." and t ranstOrined
to frequency domain by an FlFT. The resulting power spectrum was conv,'rted
to a db scale and then redistributed into 19 bark-scale categories to more niearly
represent the frequency resolution of the human auditory system. '1'he first two bark
bins (0--200 liz) were deleted because they primarily contain information about the
pitch of the speaker's voice. This helped to reduce the dimension of lhe input
vectors, thus simplifying the network by reducing the number of weights. After this
step. each record was represented by sequential 6.4 msec frames. each containing
17 numbers representing the power spectrum.

The next step was to normalize both tile artictilatorv data and the, acouistic
data processed as described abov,. Normalization can enhance the effective,,ess of
the network by eliminating unwanted sources of variation, emphasizing crucial fea-
tures of the data and pre-adjusting the data to the characteristics of the nonlinear
function used in the network. We have generally found that normalizing our in-
put/output values to within the 0-1 range provides a consistent, setup for a variety
of network problems and thus helps to transfer insights gained in one problem to
other situations. For some problems we have scaled the input to a wider range to
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take advantage of the interaction of the size of the input values with the initial
weights, biases, and dynamic range of the nonlinear sigmoid function. Output val-
ues are also typically normalized to within the 0-1 range to permit a choice of
making the final network output either a simple sum of the input to the final units,
or of making the output units like all other units by passing the sum through the
sigmoid function.

For the problem at hand, we used normalization to accomplish five goals: (1) to
eliminate spectral tilt (the trend toward lower energy values at higher frequencies)
and thus help to equate differing recording environments; (2) to eliminate recording
glitches (where sporadic very large or small values were anomalously recorded);
(3) to insure that each bark in the spectrum was given equal initial weighting;
(4) to equalize the loudness for different acoustic recordings of different subjects;
and (5) to make the range of tongue movements for different vocal tracts equivalent.
For these purposes the acoustic representation was normalized within barks, with
the highest 0.1% of the values in each bark of each record assigned a value of 1,
and the lowest 0.1% a value of 0. Other inputs were given proportionate values.
The tongue position values were normalized in the same fashion, but in this case
the limits were set so that the maximum value of both dimension of each pellet
were assigned a value of 0.9 and a minimum of 0.1. These values were chosen
because 1 and 0 are the limits of the nonlinear sigmoid function applied to the final

,rk output, and so are not realizable. Also, the values of 0.9 and 0.1 permit
)utput for extreme patterns to over or undershoot the target, thus facilitating

overall reduction of the error.

THE CONTEXT WINDOW CONCEPT AND THE PROBLEM OF TIME

A critical characteristic of speech that must be accounted for by any successful
application of network technology to speech problems is that of the temporal dis-
tribution of the speech signal. The meaning of an acoustic event at any one time
depends heavily on the acoustic signal which surrounds it. Perhaps the simplest
technique for capturing this temporal dependency is to cut out from the signal a
section of time that is presumed to.contain the category of interest, and present
it to the net as a static representation. This is appropriate if the goal is to iden-
tify isolated phonemes or words, and has been used by Burr 7 and Waibel."4 While
this solves the context problem, it creates serious problems of segmentation and
alignment.' The segmentation problem is particularly critical in the selection of
prototypes that are subword units, since phonemic information is overlapped in the
speech signal" and therefore any particular short-term segment contains informa-
tion about several phonemes. For word or syllable-length prototypes, segmentation
can be artificially accomplished by having the speaker produce the tokens in isola-
tion. Unfortunately, this requires that the user of the trained network also separate
his words by brief pauses, vastly reducing the speech recognizer's utility. Further-
more, this form of segmentation creates a critical alignment problem in that the
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test tokens must now be aligned in the input window in the same way as the train-
ing tokens. How this is to be done automatically is not clear, though Burr7 has
successfully used a modification of dynamic time warping, and many researchers
simply have aligned by hand. 26 leaving the problem for future research.

In any case, since our problem is to map from a vector-valued time series to
a continuous curve, segmentation is not a viable optikn and alternative methods
for capturing temporal dependencies are needed. One option would be to introduce
recurrences into the network architecture so as to provide the network with a kind
of memory for past events. This method was applied by Watrous et al.26 to the
identification of phonemes; by Robinson and Fallside' 9 to the speech coding prob-
lem; and by Laszlo and Zahorian' 3 to speaker identification. However, since this
technique involves complexities that we poorly understand, and presents problems
of how to prepare the input, we elected to use another technique-that of a context
window. In this technique a time window of n frames is passed, one frame at a
time, over the acoustic input, producing an n x Number-ofFrequencyBins in-
put matrix associated with each desired output value. 'Thus. each of the tongue's
particular momentary positions is associated with an n x TimeSliceLength seg-
ment of speech acoustics. Whether this segment should be arranged symmetrically
around the moment at which a particular tongue position is serving as the desired
network output, or be arranged so that most or all of it is in the future or past
relative to the desired output, must be decided by empirical exploration or pho-
netic analysis. A somewhat similar technique, called a time delay neural network,
was used by Waibel et al.2 4 and Hampshire and Waibel.' 2 In their technique. each
hidden unit in the network received input from a context window involving only the
past, and each hidden unit was aligned to a time step in the acoustic input. How-
ever, the input patterns were static in that they were segmented out of speech and
temporally aligned by hand, so this technique is not compatible with the present
objective. Nonetheless, the idea of a time delay unit on the second hidden layer
may contribute to further development of the context window technique employed
here.

THE NEURAL NETWORK
Having already decided to use a MLP to learn the mapping, we first faced the
problem of how to implement the network. Since many authors had warned that a
major practical disadvantage of traditional back-propagation implementations was
that training could take a very long time,8,24 we early decided to implement the net-
work on a CRAY supercomputer. This led to a decision to write the code in Fortran
ourselves, rather than modifying existing general purpose programs. This proved
to be a fortunate decision, because by using the program optimization utilities of
the CRAY, we were able to spot ways to maximize vectorization for this partic-
ular problem, and to then easily modify the code for faster execution. The most
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important change in this respect was to read all the acoustic data into the program
once as a Number-ofIFrequencyBins x Number-ofFrames matrix. Then when
selecting a particular context window for input, we would point to the first frame
in that window and, by reading beyond the row boundary of the data matrix, im-
plicitly provide a one-dimensional vector of length Number-of. FrequencyBins x
ContextWindow-Size as an input vector for the net. If this pointer technique had
not been used, it would have been necessary to store each input/output pair sepa-
rately; since each pair in a typical run contained about 850 floating point numbers,
this would have greatly increased the amount of memory required. Such tricks can
make an enormous difference in the time and memory required for training, and
illustrate that successful use of neural networks may require tailoring the code to
suit your problem, as well as tailoring the input representation to suit your code.

THE TRAINING PROBLEM-FINDING A GOOD SET OF WEIGHTS

Another set of decisions involved the selection of a training method. Training is
here defined as finding a good set of weights for the network-ones that will map
speech acoustics to tongue dorsum position for words not in the training set. While
training time itself does not define success, it should be short enough to permit
reasonable exploration of-the network parameter space and to allow research into
the best form and size of the training set. Thus, achieving rapid training, while
not crucial to successful application of back propagation, is a sensible goal. If we
could handcraft weights, and thus avoid the training problem entirely, we would
do so-but in that case we could have probably solved the problem in some more
efficient way and would not be using neural networks at all.

We considered three approaches to training: gradient descent plus momen-
tum, implemented as a back-propa. ion algorithm2 0 ; Quickprop, a modification in
which parabolic projections on the weight changes are used'; and conjugate gradi-
ent optimization, in which the entire network is treated as a vector function to be
minimized."8 All three techniques, when applied to our task, were able to find a set
of weights that would map the training input to the desired output within a small
RMSE. However, back propagation produced the best overall results both in terms
of time to train and success of gener•.lization. 2̀  Within the back-propagation tech-
nique, we used three methods to reduce training time: (1) use the best hardware,
(2) optimize the code for that hardware, and (3) find good combinations of network
parameters. Of these methods, 1 and 2 do not affect generalization; however, we
have found that good training parameters are generally good settings for successful
generalization.

Having decided to use a gradient descent method, the question arises as to how
large a step to take down the gradient at each weight update. This is the problem
of selecting a proper learning rate. In general, as is illustrated in Figure 1, there
is a U-shaped function that relates Learning-Rate to the time required to reach
the RMSE error level set for termination. In the example illustrated, and in others
we have explored, there is a broad range of Learning-Rate values that produce
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approximately equivalent results, with rapid deterioration of performance outside
this range. The strategy we adopted for choosing the size of the step in weight space
was to move down the gradient as far as possible consistent with a rough overall
decrease in the total error. Sine we are only interested in finding a set of weights
that will produce a map with the required accuracy and not in how we found it.
we accept fairly erratic iteration-to-iteration movement of the RMSE in the hope
that one large step will move quickly to an adequate position. This strategy will be
more successful if there are large. easy-to-find regions of weight space that produce
adcquate maps. If the solution set is a small portion of the space. then this sort of
erratic search will be proportionately less successful.

A second parameter closely related to learning rate is the floynentumnTrrm.
which determines the proportion of the last weight change to be added to the
current weight change. Again, we expect a (--shaped function relating the size of
the momentum term and the line required to reach termination criterion. Fig-
ture 2 shows this function for the case where Lcarninglate = 1.0. Peeling and
Moore17 found that for a static digit recognition task. the appropriate value of the
Momentum..Terrn depended on an interaction with the LearningRate value. We
would certainly expect this to hold here, too, but also expect that the shape of the
error surface in weight space produced by the particular problem will have an even
greater effect on the choice of a Momenturn-Term. A large momentum term would
likely be helpful if the error surface were relatively flat and smooth, while harmful
if the surface were irregular with narrow valleys. At any rate. our tactic has generally
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been to initially set the Momentum-Term to a relatively low value, then find a
good Learning..Rate, and finally do a rough search for a better Momentum-Term.

We would not expect that the choice of Learning._Rate or Momentum_-Term
would have any significant effect on generalization success, providing the net was
trained to the same final RMSE. Figure 3 show the correlation between the ob-
tained and desired output for a test set as a function of the Momentum-Term. As
expected, no substantial effects were found for this parameter, nor were they found
when Learning-.Rate was varied. Thus, unless one needs very rapid training, such

as might be required in an on-line training situation, a sensible strategy might be
to guess values for Learning-Rate and Momentum-Term and do a crude search
only if the time to train interferes with the progress of the research.

An issue related to Learning_4ate is that of the proper learning termination
criterion. The goal is to find a level of training that can be achieved in an affordable
period of time, which will also map both the training and test sets to the correct
output within a tolerable error. The tendency is to assume that better performance
on the test set will necessarily mean better performance in generalization testing,
and therefore train to the lowest level attainable. We have found that this strategy
generally produces an effect we call overfraining, in which the network weights come
to encode specific characteristics of the training exemplars which are not present in
the test patterns. This causes poorer performance during testing. To avoid this, one
can experiment with different termination levels or increase the size and generality
of the training set, thus making overtraining more difficult.
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For training regimes such as the present one in which there are a relatively
small fixed number of input/output pairs, one can update the network weights af-
ter each pair (pattern training), or after the entire set has been presented (epoch
training). The advantage of epoch training is that the measure of total error.

Z•t 1 (obtainedi - desiredi)2 , where n is the total number of patterns, is guar-
anteed to decline with training, providing the size of the step down the gradient
is sufficiently small. With pattern training no such guarantee exists, and any gain
accomplished by moving down the gradient computed for one pattern may be lost
when moving in the direction specified by another pattern. Nonetheless, we have
found pattern training to produce much more rapid learning, with no loss in qual-
ity of the solution obtained.2" Of cQurse, pattern training must be accompanied
by random presentations of the patterns in the training set to avoid a limit cycle
where early patterns move the weights in one general direction, later patterns in
another, and then the next presentations of the early patterns move the weights
back again. Apparently, pattern training combined with relatively large steps (high
Learning-Rate) finds weights which reduce the total error because the majority
of the patterns produce gradients which approximate the total gradient, and after
those majority gradients become flatter, the unusual patterns (those with grossly
different gradients relative to the weight position obtained) are then resolved. But
in any case, as a practical matter, pattern training has been vastly superior to epoch
training for this project.
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THE SIZE AND CONFIGURATION OF THE NETWORK

One way to make training relatively easy is by increasing the number of weights in
the net, so that there are more free parameters to adjust. However, if the number
of weights begins to approach, or even exceed, the number of input/output pairs
in the training set, the weights can potentially encode a sort of look-up table or
memorization of the training set and thus fail to extract features that are generally
characteristic of the input class. This may cause the network to fail to correctly
classify new exemplars when they are presented during the generalization phase.
However, just because it is possible for the net to reach a poor solution, does not
mean that it will actually do so in practice. It is quite possible, especially if many of
the input/output pairs are relatively similar to each other, that the solution found
will be a general one that will successfully map new input to the desired output.

The easiest way to increase the number of free parameters in a fully connected
net is to increase the number of hidden units in the first layer. The motivation for
doing so is to provide enough units for relatively rapid learning, while still forcing
the extraction of general features. Figure 4 shows the time to reach termination
criterion as a function of the number of hidden units in the first layer. As the
net size increases, each pass through the net takes more time because there are
more connections to evaluate. However, fewer iterations through the training set
are required because a solution should be easier to find. For this problem we did
not find that the number of hidden units affected the success of generalization. This
result was unexpected because we had felt that fewer hidden units would force more
abstract representations of the input and, thus, produce a better generalization to
input not in the training set. We expected to pay for this benefit by longer training
times and poorer performance on the training set. However, the expected result was
not obtained, perhaps because the few units (> 2) required for successful training
encode features that are equally prominent in the test set.

For some problems it has been shown that adding a second hidden layer to the
n-twor!- -- n ,•r-,ease the succes of generalization14 since the second hidden layer
can form a more abstract representation of the input pattern. While this may be
true for many problems, for this problem we did not find any advantage to adding a
second layer. For example, a net with one layer of 13 units generalizes from training
on one recording to a second recording from two other speakers with a correlation
between the obtained and desired tongue dorsum trajectories of r = 0.76. Adding
a second layer of five units produces a nearly identical correlation of r = 0.77.

Of the parameters that define the state of the network, two are directly con-
cerned with the representation of speech: the ContextWindowSize, and
Percent..Future-the proportion of the context window which is future or past
relative to the momentary tongue dorsum position serving as target. Since it
is reasonable to presume that values which are useful for one speech problem
will likely also be useful for other similar problems, we first varied the value of
ContextWindowSize from 64 msec to 768 msec, trained on one record from one
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speaker. and tested on different records from two other speakers. Figure 5 shows
the mean CPU time required to reach a RMSE of 0.06, while Figure 6 shows the
mean correlation between obtained and desired during the testing phase. Fortu-
nately, the two criteria for good parameter settings provide similar answers. A
good Context-indow-SiZe for both training time and generalization success is
from 256 to .384 insec. This period is about the duration of a spoken syllable, which
might be assumed to be the maximum size that has clear acoustic information
about the phonemes being formed and consequently the tsongue motions producing
them. Figures 7 and 8 show the same measures as a function of the proportion of
the context window that is in the past relative to the target. Examination of these
results show that a good value for this parameter is around 0.4, suggesting that
information from both the past andfuture is useful, while elirmination of all future
acoustic information makes the problem much more difficult.

THE SIZE OF THE TRAINING SET

One of the most obvious ways to attempt to increase the success of generalization
is to increase the size of the training set. The argument is that since a single set
of weights is now required to map many more examples to the appropriate out-
put, the net will be forced to use features common to all members of each class in
order to successfully learn the mapping. What can happen, however, is that large
training sets may make it more likely that the net will reach some local minimum
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or that training time will become too long for practical application. 14 Furthermore.
if the extra training vectors are not fairly representative of the distribution of the
set of potential iaput vectors, then the net may overlearn one class of patterns-
since correctly mapping that class will have a disproportionate effect on reducing
the total error, while incorrectly mapping the poorly represented classes will have
a small effect on overall error. Thus, increasing the training set size should not
automatically be considered a wise strategy, though should clearly be considered if
generalization success is below the required level.

Figure 9 shows the time to train as a function of training set size. Two tech-
niques were used to select the members of the training set. In the first technique.
members of the training set were randomly chosen from the 26,912 pairs availabl"
from four recordings from three different speakers, with the restriction that equal
numbers of pairs were taken from each speaker. A fifth recording of each speaker
was reserved for testing. In thk second technique. the pairs were selected sequen-
tially from the recordings, beginning with the first recording from the first speaker
and continuing until all pairs in that record were exhausted, and then more pairs
were included by addi-ig all the pairs in additional recordings. This sequential tech-
nique produced considerably faster training than did random selection because the
training sets contained many vectors that were similar to each other. This was ex-
pected because a reLcrdiii• coutains one speaker repeating eight words three times.
While this rapid training might appear to be an advantage, the sequential selection
technique produced problems during geiierafization. New input vectors that are dis-
similar to those that were well represented in the training set are likely to be poorly
mapped. This effect is illustrated in Figure 10, where the success during testing of
the two selection techniques are plotted against training set size. There the advan-
tage of the random selection method is clearly shown, since very satisfactory results
were obtained after selection of about 100 vectors from each speaker.

RESULTS
The purpose of an application of back propagation is generally not to understand
how Lt.- network responds to varying its parameters, but rather to obtain a system
that accurately maps new input to the correct output. The degree of accuracy
required generally depends crucially on the uses to which the output will be applied.
Figure 11 shows the actual and inferred tongue dorsum vertical position for one of
the three speakers for a segment of speech not included in the training set. The
correlation between the two curves was r = 0.94, showing that the general shape
of the curves was highly similar, while the magnitudes of the two curves were
somewhat different (RMSE = .09). However, for the purpose of identifying when
the velar closure occurred, or for providing avisual display of the tongue dorsum's
movement, the inferred plot is clearly adequate.
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These results were produced by a one-layer network with eight hidden units and
one output unit. Training was done with a Learning-R~ate of 1.0 and a
Momientum-ferm of 0.5, and was terminated when RMSE reached 0.08. The con-
text window size was 320 msec with 60% of the window in the fuwhe, and the
training set consisted of 6000 randomly selected pairs from four different record-
ings.

Obviously, since an exhaustive search of the network parameter space was not
completed, some other network configuration might have produced better results.
This is not of particular concern here, however, because we have achieved satis-
factory results with the current trpaining set. With other problems, where good
results have not been achieved, the possibility of improvement by manipulation of
the network parameters presents a problem-how to decide if further tweaking of
the parameters will be beneficial or a waste of computer cycles. In general, our
sc,!"tion would be to try large variations in the parameters to get a rough idea of

'., useful range of values, and then select some moderate value and not attempt
.ýessive fine tuning. We have found that potent effects on results are more easily

obtained by changing the input representation or the training set than by making
minor adjustments in network parameters.

In some respects, the results we have achieved are suspiciously good-particu-
larly the success obtained after training on only 100 randomly selected 320 msec
bits of speech from each speaker. Perhaps we have overestimated the difficulty of
the problem. Since the speech signal is obviously caused by movements of the vocal
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apparattus, it. should niot be suirprisi ng that, a net~work can easily finrd a fu nct ional
relatijonsh ip bet weenl the t wo Ioin ams. On)r t he ot her hand. perhaps ou r success is

lie result. ot' choosing I rainirig and( test svi s that are so clIosely mlatched that t hey
are aI poor represenitat ion, b'r any realistic applicationt.

('hIarly, we now nreed to) ext~end tlie( currenlt, resulits to riiore (difficuilt probli'ris
rivoix' v g other speech art icii at ors. differinug speaking rates. mlore general speech

,,anii Its. and a greater varity (d I speakers. O ur opt ilniust ic flyp [sis I ha f it,
,x pewntlcegal Iwd hlere will t ratisit*r to niew sitiuat ions and permnit. v.id resol ntIon of

plWJrobletiLs ;I~s they dtewlop. Ii t Inis hypothesis Is correct. lbak-propagat ion t cli-
II IqnIeI( wvill su relv find ticreasi ugly wvidespread application to cunrrently intract able
prohlttrs.
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Department of Zoology, Duke University, Durham, NC 27706Pattern Formation in Biological Systems

Pattern formation refers to the processes in development by which ordered
structures arise within an initially homogeneous or unstructured system. Under-
standing these processes is absolutely essential for understanding regulatory mech-
anism in development. It is also essential for understanding the developmental ori-
gin of biological form, and ultimately, for understanding morphological evolution.
In practice, pattern formation refers to things like the processes in embryos that
determine where gastrulation will occur, or the processes that define where bones
will condense in the mesenchyme of a developing limb, how many there will be,
their shape, and their positional relation to each other. Or in plants, where leaves
will form on the stem of a plant, and.what shape those leaves will have.

Here we will be particularly concerned with processes of pattern formation that
occur quite late in animal development, in particular, the development of pigment
patterns. Pigment patterns have several advantages as model systems in which
to study the principles of pattern formation. First, color patterns are almost al-
ways two dimensional, so they can be studied on the plane without having to use
projections or collapse dimensions. This makes them far easier to deal with than
three-dimensional processes in development, and makes color patterns particularly
attractive for computer modeling, because the whole pattern can be represented on
the two-dimensional computer screen. Second, since they develop relatively late. the
processes that give rise to the pattern occur ini a system that is usually macroscopic

1991 Lectures in Complex Systems, SFI Studies in the Sciences of Complexity,
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and, therefore, more easily manipulated experimentally than are early embryos.
Third, since pattern is manifested as the local synthesis of pigment, it is easy to
detect. Fourth. since the chemical nature and biosynthetic pathways of most pig-

ments are known, it is in principle possible to fully understand all control pathways
in the system at the chemical and molecular level. Finally, it is in systems like color
patterns, where all the molecular and biochemical steps are in principle knowable
and understandable, that we have the best chance of uncovering the full sequence
of events that links genotype and phenotype, something that has yet to be done for
any morphological event.

THREE MECHANISMS
The processes that result in local specialization of structure and function can be
formally subdivided into two distinctive kinds: those that involve cell migration and
mechanical interactions among cells (such as traction and differential adhesivity),
and those that involve chemical pre-patterning.14 19 Murray14 points out that the
two mechanisms are quite different because in chemical pre-patterning the chemical
pattern precedes morphogenesis, while in patterning by mechanochemical cell-cell
interactions, morphogenesis is the immediate consequence of the patterning process.
There are a few examples of patterning systems that are purely one or the other
(the formation of butterfly wing patterns, which we will deal with below, is one
of them), but in most cases both mechanisms seem to operate, such as when a
chemical gradient allows migrating cells to aggregate and interact.

Among the best studied examples of cell movement-mediated patterning are
aggregation and fruiting body formation in the slime mold Dictyostelium, and the
formation of bones in the developing limbs of vertebrates. In Dictyostelium we have
one of the very few cases in which we actually know what the chemical morphogen
is whose gradient stimulates the initial aggregation. Here the aggregation signal is
cyclic AMP (cAMP), which is secreted by isolated cells when they run out of food.
When other cells perceive this sigwal, they are attracted to its source and migrate
up the cAMP gradient. Such migrating cells also begin to secrete cAMP themselves,
and a complex set of interactions ensues that transiently gives rise to interesting
cell aggregation patterns and eventually results in the clumped aggregates. While
aggregating, the population of cells does exhibit spatial patterns of spiral waves
very similar to those seen in the Belousov-Zhabotinski reaction, and in many models
using cellular automata (see figures in Winfree, 32 Tomchik and Devreotes, 27 and
Murray14 ).

Patterned bone formation in the mesenchyme of developing vertebrate limbs
has been studied in a variety of contexts. Perturbation experiments have revealed
complex interactions that have been modeled conceptually as the well-known clock
face model of French et al.8 and Bryant et al., 2 and mechanistically as a traction-
aggregation mechanism by Oster et al. 20 Evolutionary morphologists have been
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particularly interested in the development of bone patterns in vertebrate limbs
because the well-established homologies among the bones. and the extensive histor-
ical pattern of their transformation preserved in the fossil record, makes this one
of the most attractive (and tractable) systems in which to study the interplay of
developmental and evolutionary processes in the shaping of biological form."i 2

Pigment patterns arise by the same two mechanisms, of cell movement and
chemical pre-patterning and, in mollusk shells, by a third distinctive mechanism
that involves a complex interplay between the tissue of the mantle and the shell
as it is secreted. In vertebrates, the pigment pattern of the skin is produced by
melanophores, which are cells that produce the black/brown pigment, melanin.
Melanophores arise from the neural crest (along the dorsal midline) early in embry-
onic development and from there migrate across the body surface. 5' 29' 30 The color
patterns of fish, frogs, zebras, giraffes, and leopards are therefore the consequence
of the migration and patterned accumulation of pigment-producing cells.

In insect color patterns, the mechanism is quite different. The insect epidermis
is only one cell layer thick, and the cells are attached to the overlying cuticle most of
the time. Cell migration and cell rearrangement are therefore generally impossible.
All patterning in the epidermis must therefore take place by mechanisms of cell-
to-cell communication. The cells of the insect epidermis are interconnected by gap
junctions and are thus coupled electrically and are potentially coupled by diffusion.
Signals can thus be transmitted across substantial distances and control over this
communication can be exercised by modulating the number and distribution of gap
junctions that are open at any one time. Pigment patterns are thus the result of
local cell differentiation in a static monolayer of cells. Formation of the pattern
does not involve cell migration, nor is the pattern subsequently modified by cell
rearrangement.

In the shells of gastropods (snails) and bivalves (clams), the color pattern is
laid down as the shell is secreted. The pigment of the pattern resides not in cells
but in the non-living shell. In contrast to the two previous cases, pattern formation
in shells is essentially a one-dimensional process. During growth the mantle adds
material to the leading edge of the shell and at the same time secretes pigments
at appropriate locations to produce species-characteristic color patterns (stripes,
spots, zig-zags, etc.). The mantle is-a motile organ and moves frequently relative
to the margin of the shell as the animal locomotes, rests, and hides. Consequently,
shell deposition is not continuous but shows both regular and erratic periods of
growth and rest. The mantle ultimately controls where and when the shell will
grow, and also where exactly pigment will be deposited. The pigment pattern is
thus the result of the behavior of the whole mantle and of the way it interacts with
the growing edge of the shell.

The color patterns of vertebrates, of insects, and of mollusk shells thus come
about by three fundamentally different mechanisms. Theoretical work has shown.
however, that the essence of these three pattern-forming processes can captured by
very similar sets of mathematical equations. 7,14,19 This suggests that the principles
involved in each process could be fundamentally similar even though the actual
mechanisms are not. In almost all cases, lateral inhibition (short-range activation
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coupled with long-range inhibition of a particular event) provides the organizing
mechanism, and, while systems may differ in the exact means by which effective
activation and inhibition is achieved (e.g. cooperativity, autocatalysis, or positive
feedback, versus catabolism, interference, or competition), the final spatial results
of the process are similar if not identical.

In the sections that follow we will assume, for the sake of simplicity, that chem-
ical pre-patterning is the process at work because such a process can be modeled
without having to take account of the movement of cells relative to one another. In
addition, we will assume a perfectly two-dimensional system. Thus, what follows
will apply, strictly speaking, only to pattern formation in the insect integument. As
we will see, these assumptions produce a rich, complex, and largely non-intuitive
world of patterns, that begs further exploration, both experimental and theoretical.

DIFFUSION
In biological systems, convection (usually via a circulatory system) and diffusion
(within cells and, via gap junctions, between cells) provide the most common means
of chemical communicatiobt within and among cells and tissues. Convection is gener-
ally used for long-range transport and appears to play no role in any of the pattern
formation systems that have been studied so far. Thus, to understand patterning,
we need to understand the mechanism and consequences of diffusion.

Diffusion comes about by the random movement of particles produced by ther-
mal agitation. The mathematics of diffusion has been widely studied, and the reader
is referred to the text by Crank4 for the fundamentals, and to Carslaw and Jaeger3

for a more elaborate treatment of special cases. In one spatial dimension, the dif-
fusion equation is usually written as:

a- = DV2 c (1)

where c is the concentration of tire diffusion substance, and D is the diffusion
coefficient. On macroscopic scales diffusion is a slow process. The dimension of
the diffusion coefficient, D, can be used to get an idea of the rate of diffusion. If
the diffusion coefficient is expressed in the units cm2/sec, then the average time (in
seconds) it takes for a particle to diffuse through a given distance, d (in centimeters),
is approximately d2 /D. 6 Moderately large biochemical molecules diffuse through
the cytoplasm of a cell with D = 10-i. Such a molecule would take an average of
(10-4)2/10-7 = 10 seconds, to diffuse across the diameter of a typical 10 micron
cell. The average distance over which diffusion acts within a given period of time
is proportional to (Dt)1 / 2.6 Even though diffusion is an inherently slow process, it
does clearly provide a relatively effective means of communication over the small
distances (usually 1 mm or less) and time periods (hours to days) that are relevant
to most developmental systems.
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Diffusion-dependent processes can also exert their effect rapidly and over much
larger distances if they are coupled to some amplifying machinery. The diffusion of a
large charged molecule (say, D = 10-7 cm2/sec) across a cell membrane can rapidly
change the local balance of charge, and cause the diffusion of small ions towards
or away from the area. If the small ions have a diffusion coefficient of, say, 10-',
and act as intermediate messengers, then the rate of "signal" propagation caused by
diffusion of the large molecule would have been amplified 100-fold. The propagation
of an action potential, which is basically a cytochemical cascade mechanism. is a
well-known example of the amplification of a diffusible signal.

EVOKING AN EFFECT: THRESHOLDS

Simple linear diffusion from a source into a medium, or from a source to a sink,
sets up a gradient in the concentration of the diffusing substance. The concentra-
tion at a particular point (p) along such a gradient carries information. It can be
used to estimate both the distance between p and the source (or the sink), and the
time since diffusion began. For the purposes of pattern formation, the former, the
estimation of position wit-hin a diffusion field, is the more interesting and useful
one. In the simplest case of pattern formation, diffusion from a point source sets
up a gradient of a chemical across an otherwise homogeneous developmental field,
and some novel developmental event is caused to occur wherever the concentration
of the gradient is above (or below) some critical value. As we will see below, the
eyespots in the wing patterns of butterflies are produced by just such a simple
mechanism. Changes in the threshold, and changes in the shape of the gradient can
both alter the dimension and position of the "pattern" within the total field. The
formal requirements and consequences of pattern formation by such simple gradi-
ent systems have been explored by Lewis WVolpert 34 in his "Theory of Positional
Information."

On this view, the problem of pattern formation is twofold: first, how to establish
a source for the diffusing signal, and second, how to retrieve the information in the
diffusion gradient. The first of these problems is by far the most difficult one. and
we will take it up below. The second problem can be rephrased to ask: how do you
set up a threshold so that the continuously distributed gradient in one substance
(the diffusing signal) is translated into a sharply discontinuous and stable change
of some developmental or biochemical event?

Lewis et al.11 have developed an elegant model for a threshold mechanism.
They note that most threshold models assume an allosteric enzyme whose activity
is a sigmoidal function of substrate concentration (Figure 1). The problem with
such a model is that along a gradient of substrate concentration the transition from
the inactive form to the active form of the enzyme is graduai and occurs over a rel-
atively long distance (Figure 1). Increasing the number of cooperatli.g subunits in
the enzyme increases the steepness of the sigmoid transition and thus sharpens the
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"threshold" to some degree. Allosteric enzymes generally, however, have no more
than four subunits, and that puts a practical limit to the refinement of a threshold
by this means. Lewis et al."' suggested a modification of the allosteric model to in-
clude also a linear degradation term. They suggest the following structure. Suppose
a gene G, which produces a product g, that stimulates its own synthesis by positive
feedback at a rate that is a sigmoidal function of its concentration (KTag 2/ kb + g2),
and that g breaks down at a rate proportional to its concentration (-keg). Sup-
pose further that the synthesis of g is also stimulated by a signal molecule S, at a
rate that is linearly proportional to the concentration of S. This gives the following
relationship:

dg _k~gd = k-S+ k4g (2)
dt k3 + g 2

which is shown graphically in Figure 2. The graph of the rate of production of g is in
effect an inclined sigmoid curve whose position is controlled by the value of S. When
S is small, the reaction has three steady states, two of which are stable (Figure 2).
If the system starts with gene G off, and thus with no g present, the concentration
of g will tend towards its low steady state. Small and moderate perturbations in
its concentration will always cause g to return to this low steady state. However,
if the concentration of S goes up, the level of the curve rises and there is eventu-
ally only one steady stat-jof g (Figure 2), much higher than the previous one. Thus,

-2

Morphogenelic
S•gradient

•, -3- FIGURE 1 Allosteric model for
a threshold. The concentration
gradient in S activates an
allosteric enzyme that obeys

-4- the Hill equation. The degree
1.0 - of saturation of the enzyme,
y -- -- - / - y, that corresponds to various

points along the gradient is
0.5 Allosleric shown in the lower graph.

response The threshold provided
by this mechanism is not

y -- - - sharp and the transition can
extend across many cells.

0 Cell position Reprinted by permission of the
* .. publisher from "Thresholds in

_Development" by J. Lewis et
al., J. Theor. Biol. 65, 579--
590. Copyright @ 1977 by

Territory I Intermediate Territory 2 Academic Press Inc. (London).
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if S increases gradually, there will be a sudden transition in the conce:ntration of
g from its low to its high steady state. A smooth and continuous change in the
concentration of S thus results in an abrupt switch in the concentration of g. This
gives us, then, a mechanism for a sharp threshold in the control variable, S. with
no intermediate values between the extremes of the response variable, g.

An additional interesting and useful feature of this model is that it has a kind of
"memory" because, once g has switched to its higher steady state, it will stay there
even if S subsequently declines or disappears. Thus we have essentially a mechanism
for the irreversible activation of a gene. If such a gene controls, for instance, the
synthesis of pigment-forming enzymes, then we have a mechanism for producing a
patch of pigment wherever the concentration of S is above the threshold defined by
Eq. (2).

REACTION DIFFUSION
Pattern formation by diffusion gradients requires at the very minimum the existence
of a source of the diffusing chemical. If pattern regulation is important, then a sink
is also essential, so that all intermediate values of the gradient are always present
within the developmental field. It should be clear that this requirement for a source
(and a sink) in effect pushes the problem of pattern formation back one step. and
the issue becomes one of determining what causes the sources and sinks to be where
they are.

Though unsatisfying from a mathematical point of view, such potentially in-
finite regressions in control mechanisms are biologically reasonable and probably
the rule rather than the exception. Developrrlent is, after all, a complex network of
causal connections in which any process works correctly only if all the preceding
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ones did (at least within certain tolerances). There are, however, certain condi-
tions under which a stable pattern can emerge in an initially homogeneous and
randomly perturbed field without the need for initial sources or organizing cen-
ters. The conditions under which this can occur were discovered by Turing26 and
this discovery constitutes one of the major advances ever made in the theory of
biological development. 'furing 2 showed that the steady-state condition of certain
kinds of biochemical reactions can be made spatially unstable if at least two of the
reactants are able to diffuse. In other words, if the reactants are free to diffuse.
then it is possible for them to become stably patterned into areas of high and ar-
eas of low steady-state concentrations. On first sight this is a non-intuitive result,
because one generally thinks of diffusion as having a homogenizing effect. Under
certain conditions, however, diffusion can act to amplify spatial waves of certain
critical frequencies. The mathematics behind this process were outlined by Tur-
ing and have been more fully explored by many other authors since. Particularly
readable accounts of the theory and the conditions under which such diffusive in-
stabilities arise in chemical reaction systems are given by Segel and Jackson-2 4 and
by Edelstein-Keshet. 6 and a more technical treatise with many examples is given
by Murray.14 The most elaborate exploration of the consequences and possible uses
of one class of these reactzon-diffuszon mechanisms is given by Meinhardt. 2

The conditions necessary for chemical pattern formation in reaction-diffusion
systems are given by Edelstein-IKeshet6 as follows:

1. There must be at least two chemical species.
2. These chemicals must affect each other's rate of production and/or breakdown

in particular ways.
3. These chemicals must also have different diffusion coefficients.

The general equation system for reaction diffusion is:

O Aa =F(A, B'. + DAV 2A

OB =G(A, B) + D8jV 2 B

in which F(A, B) and G(A, B) define the reaction equations for the two interacting
chemical species.

Most mechanisms for chemical patterning produce a set of conditions that are
referred to as lateral inhibition. What this means is that one of the chemicals, usually
called the activator, has a low diffusion coefficient and exerts its influence over a
fairly short range while the other, called the inhibitor, has a much higher diffusion
coefficient and thus exerts its effect over a much longer range. The term is derived
from physiology where similar short-range activation, long-range inhibition systems
are common, and particularly well studied in the retina where lateral inhibition is
in part responsible for the detection of edges and patterns.

Three reaction-diffusion systems have achieved particular popularity for prob-
lems in developmental biology and biological pattern formation. The model of
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Schnakenberg 22 is one of the simplest systems that exhibits chemical pattern for-
mation. Its reaction dynamics are given by:

F(A, B) =kj - k2A + k3A 2B, 3)

G(A, B) =k4 - k 3 A 2 B.

The lateral inhibition system of Meinhardt12 is the one whose behavior has been
studied most extensively:

k 3 A
2

F(A, B) =kl - k2 A + B 
(

B (4)

G(A, B) =k 4A2 - k5 B.

The reaction system of Thomas, 26 while more complicated than the preceding two.
has the virtue that it is the only system that is empirical, based on real chemistry.
It involves three reactants as follows:

F(A, B) =k, - k2A - H(A, B),

G(A, B) =k 3 - k4B - H(A, B), (5)

H(A, B) = k5 AB
k6 + k7A + k3A 2 "

For many purposes it is convenient to express equations such as these in a
nondimensional form. One reason is that nondimensionalization always reduces the
number of parameters in the model, which simplifies the analysis of the scope of the
mode2l. Another is that it removes the units of measurement and thus allows one to
examine the effects of scale more effectively.14',2 3 Murray 14 suggests the following
general nondimensional form for reaction-diffusion systems:

Ut =-yf(u, v) + V 2 'u,

Vt =7g(u, v) + dV 2 v. (6)

With the appropriate scaling, the reaction dynamics for the three systems men-
tioned above can be rewritten as follows:

f(u, v) =(a - u + u2V)

g(u, v) =(b - it t)

for the Schnakenberg system;

U-
f(u,v) =a - bu + (

) (2 _
g(u, v) =u - v
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for the Meinhardt system; and

f (u, v) =a - u - h(u,

g(u,v) =a(b - v) - h(u.r) (9)

h(u, v) = PUV
1 + u + Au,-

for the Thomas system.
The parameter d in Eq. (6) corresponds to the ratio of the diffusion coeffi-

cients of inhibitor and activator, while the parameter -y represents the scale of the
system. Murray1 4 suggests that y is proportional to he area of the system. for
two-dimensional diffusion. -y can also represent the strength of the reaction term
relative to the diffusion term. An increase in -y can be offset by a decrease in d The
advantage of having a single variable that can represent the scale of the system
is that the consequences of pattern fo-mation in a growing system can be easily
studied, and predictionz can be made about the differences in pattern that would
be produced when the same mechanism acts in developmental fields of different
sizes. Both features are of interest to developmental biologists who perforce deal
with many systems that undergo growth during the period of study.

The advantages of nandimensionalized systems in facilitating studies on the
effects of scaling are offset, for the biologist at least. by the fact that other biolog-
ically important parameters (such as the reaction constants for the synthesis and
breakdown of specific chemical species) become inaccessible to manipulation. Since
such reaction constants provide the only direct link to the genome (genes code
for enzymes, whose activity is represented by tihe reaction constant), it becomes
virtually impossible to study the effects of single gene alterations. Thus biologists
interested in exploring the potential of gradualistic accumulations of small genetic
changes to cause gradualistic (or discontinuous) morphological chan-gC will need to
work with fully dimensional forms of a system.

In addition to the general conditions for chemical pattern formation mentioned
above, there are several specific conditions that must be rr't. These are treated in
detail and with several examples by Segel and Jackson,24 Edelstein-Keshet.6 and
Murray."4 Only the summary concl~isions will be given here. The form of the null
dines (the graphs of dx/dt = 0) of the reactions gives esseniial information on
whether diffusive instability is in principle possible. The character of the crossover
point of the two null clines (the system's steady state) is critical: the activator and
inhibitor must both have positive slopes or both have negative slopes at steady
state, and, in either case, the slope of the inhibitor must be steeper than that of
the activator.6 The null dines for the nondimensional forms of the three reaction-
diffusion equations listed above are given in Murray.' 4

Whether or not a system with null clines of the required shapes will exhibit
diffusive instability depends critically on the values of the parameters, and these
are specific to each system. Murray13 has worked out the parameter space for the
nondimensionalized forms of the three reaction systems listed above, and has shown
that they are surprisingly narrow. In almost all cases parameters must be chosen
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with considerable precision and the choice of one parameter value places significant
constraints on the possible values of the remaining parameters. Once the parameter
space for a given system is known, however, it can form the basis for the numerical
exploration of its pattern-forming properties.

The analysis of the gcneral behavior of a reaction-diffusion system is not a triv-
ial matier. Because reaction-diffusion systems involve coupled nonlinear equations,
they usually cannot be solved analytically and their behavior must be studied by
numerical simulation. It is, however, possible to get a general idea of how a partic-
ular system behaves by studying perturbations near the steady state of a linearized
system (see Edelstein-Keshet'6 for the description of a method). Such a linear theory
approach can predict the number of modes that will form after random perturba-
tion of a field of given dimensions. Arcuri and Murray1 ha,,e used linear theory
to predict the pattern generated by the nondimensionalized Thomas system in one
space dimension (Figure 3(a)). The theory predicts a regular increase in the number
of modes as either d or -y increases (Figure 3(a)). Numerical simulation of the full
nondimensional Thomas system, however, gives somewhat different results (Figure
3(b)). Odd modes appear to be favored over even modes, something which linear
theory does not predict. The solution space for modes 2 and 6 is parLicularly small
in the full nonlinear system.

Arcuri and Murray1 also calculated how the modes of a Thomas system would
behave in a growing field. As the field grow-. it can support a progressively larger
number of modes. Existing modes appear initially to split in two, which would
result in a doubling of the number of modes. But this is not what happens. Instead,
at a critical point the system appears to become unstable and reorganizes so that
only a single mode is added. Only in some cases is more than one mode added as
the field grows, which is consistent with the behavior shown in Figure 3(b), where
many odd numbered modes are adjacent.

In two dimensions the succession of modes is more complicated, and is critically
dependent on both the chemistry of the system and the geometry of the field. In
a rectangular fieli two perpendicular sets of waves are possible, and as the scale
of the ficed increases, more waves can be fitted along both axes. The succession
of modes for a general reaction-diffusion system on a rectangular field with no-
flux boundaries has been studied 13y Edelstein-Kesheti and is shown in Figure
4 for a field of dimension I x 2. The quantity E 2 in Figure 4 has the following
correspondence:

E M +n/ (10)

where m and n are integers that represent the number of wavelengths parallel to
the x and t ,cis, respectively, and -y is the dimension of the field parallel to the
y axis divia, by the dimension parallel to the x axis. The succession of modes
is then given by the sequence of values of m and n, ranked in order of increasing
values of E'. 6 Figure 5 illustrates the patterns that correspond to several of these
modes. In a real system E 2 can be derived as a function of the area of the field and
the ranges of activation and inhibition, and thus the succession of modes shown in
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Figures 4 and 5 can be the consequence of gradual changes in any of these three
parameters. Of course, fields of different shapes may have a different succession of
modes, determined also by the value of -
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reaction-diffusion system under the conditions described in Figure 4. Reprinted by
permission of the publisher from Math•ematical Models n Biology by L. Edelstein-
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In circular and elliptical fields, the succession of modes is also different.
KauffmanIU has calculated the mode progression for a general reaction-diffusion
system on an elliptical domain of increasing size and showed that the succession
of nodal lines on such a growing field was very similar to the succession of com-
partmental boundaries that form in the wing imaginal disks of Drosophila. It may
therefore be that the progressive compartmentalization of the Drosophila iniagi-
nal disks is the simple and spontaneous consequence of a reaction-diffusion system
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operating on a growing domain. It is interesting to modes that the succession of
modes is also similar to the succession of nodes in vibrating circular and elliptical
plates. Xu et al.3" have shown that the vibrational modes of plates of more complex
shapes also corresponds generally to the pattern boundaries produced by reaction-
diffusion systems on similar-shaped fields. Murray"4 has noted that the initial stages
of chemical pattern formation by reaction-diffusion poses the same mathematical
eigenvalue problem as that describing the vibration of thin plates. Thus, assuming
equivalent boundary conditions can be established on vibrating plates, we may have
here an analog model of pattern formation by a general reaction-diffusion system
that solves for the pattern almost instantaneously, and would therefore afford a fast
and efficient way of exploring patterning in complex geometries.

A DISCRETE MODEL OF PATTERN FORMATION BY LATERAL
INHIBITION
Young36 has demonstrated that instead of using continuous partial differential equa-
tions to describe pattern formation by reaction diffusion, it is possible to obtain
equivalent results with a-completely discrete model that captures the essence of
lateral inhibition but does not require solution of the diffusion equation. Young's
theory is modeled on the one proposed by Swindale 5 for explaining patterns in the
visual cortex of the brain.

Young 36 models the combined effect of a short-range activator and a long-
range inhibitor by assuming that around each "source" cell there are two concentric
circular regions: an inner one where there is a constant positive value of some
control parameter, and azi outer one where there is a constant but negative value
of the same parameter (Figure 6). This condition corresponds to the short-range
activation and long-range inhibition of a lateral inhibition model, the principal
difference being that in reaction-diffusion systems the "activity" of the activator
and inhibitor decline gradually with distance from the center of activation.

The Young mechanism produceg spots or irregular stripes, depending on the
ratio of activator and inhibitor levels (Figure 7). Small values produce spots, while
large values of the ratio produce stripes. The size of these pattern elements is
determined by the range of the activator, while their spacing is determined in large
measure by the range of the inhibition. One of the chief advantages of the Young
method is that the patterns form and stabilize after only three or four iterations.
This mechanism can therefore produce patterns far more rapidly than one that
depends on the numerical simulation of diffusion (which may require thousands of
iterations).
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RANDOM AND NON-RANDOM PATTERNS
The patterns produced by the Young mechanism (Figure 7) illustrate one of the
limitations of the standard approach to the simulation of pattern formation. When
patterning is initiated by random perturbation of the steady state (as is usually done
to study the general properties of a given reaction-diffusion mechanism), then the
pattern produced is also random. These patterns thus mimic the stripes on the coats
of zebras, or the spotting patterns of cheetahs, leopards, and giraffes, all of which are
random and characterize the individual like fingerprints. Randomness is. in fact, the
hallmark of vertebrate color patterns, and of certain developmental patterns such
as the interdigitating ocular dominance stripes in the vertebrate visual cortex. The
vast majority of patterns in development, however, are regular and are reproduced
identically from individual to individual. To obtain regularity and repeatability, it is
necessary to define the boundary conditions and initial conditions by a non-random
mechanism. The trick in modeling pattern formation in development is to find a non-
arbitrary means of defining initial and boundary conditions. This generally requires
substantial knowledge of the developmental biology of the system under study.
Thus, while reaction-diffusion mechanisms can make patterns that look remarkably
like those seen in nature, we can only accept a given pattern and mechanism as
representing nature in a significant and meaningful way if it is bacl, "-n by a body
of experimental evidence that gives us confidence that we have appi. .ie correct
boundary conditions.

RESULTS OF SIMULATIONS IN TWO DIMENSIONS
We use numerical simulation methods to illustrate some of the differences between
the three reaction-diffusion schemes discussed above. The field dimensions and
boundary conditions used in these examples were chosen because they define a
problem of biological interest, namely the formation of butterfly wing patterns.
We will first, however, examine the behavior of the models before illustrating their
application to a biological problem.

Figures 8, 9, and 10 illustrate the behaviors, respectively, of the nondimension-
alized Schnakenberg, Thomas, and Meinhardt systems subject to the same initial
and boundary conditions. The field is a (1 x 2) rectangle, with fixed boundaries
on one short side and the two long sides, and no-flux conditions at the remaining
short side. Initial conditions were the unperturbed steady state. The figures show
the near steady state concentration of the activator that develops after setting the
fixed boundaries to 1.1 times the initial steady state. Each panel explores the d/3Y
parameter space. It will be recalled that an increase in the parameter -f can be
interpreted as an increase in the size of the field, while an increase in parameter
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d represents an increase in the range of the inhibitor. The patterns produced by
fixed boundary conditions on all four sides can be visualized by reflection on the
horizontal midline of each figure. ,

It is obvious that the three mechanisms produce dramatically different patterns.
The Thomas and Schnakenberg systems produce mostly linear patterns, while the
Meinhardt mechanism stabilizes as point patterns. The patterns produced by the
Thomas and Schnakenberg systems differ considerably in detail. The Thomas pat-
terns are relatively simple lines, while the Schnakenberg patterns tend to develop
bulges and isolated islands of activator concentration. It is possible to get an idea of
the sensitivity of these systems to variation in parameters and field size by noting
the changes in pattern that are associated with, say, a 10% change in d or -Y. On
the whole, variation of this magnitude has relatively little effect on the pattern.

It is evident that the three reaction-diffusion systems are far from equivalent,
even though linear theory predicts the same general behavior for all three systems.
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The details of the patterns prociced by each, and the characteristic differencesbetween them, can only be uncovered by simulation. This means that there is noway of using the information in Figures 8 to 10 to predict how these three systemswill behave under different boundary conditions. We can be assured that each will
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produce characteristically different patterns, but their form cannot be predicted
without simulation.

Both the one-dimensional simulations of Arcuri and Murray' and the two-
dimensional simulations shown above illustrate that the full nonlinear systems pro-
duce patterns whose details differ significantly (and often dramatically) from those
predicted by linear theory. For most developmental systems the details of the pat-
tern are more important than its general features, and this means that each biolog-
ical problem in which reaction diffusion is believed to play a role must be studied
by full simulation of the nonlinear system.

CELLULAR AUTOMATA
We conclude the general section on pattern formation with a brief discussion of the
usefulness of cellular automata for simulating pattern formation in development.
In their pure form, cellular automata are points in space which can take on one of
two values (0 or 1) depending on the values of other such points in their neighbor-
hood. The rules of a cellular automaton determine how the values of neighbors are
interpreted. With relatively simple rules operating on such binary automata, it is
possible to produce a vast array of complicated patterns that have fascinated math-
ematicians and biologists for nearly a decade (e.g., Wolfram33). Such automata have
been used, among others, to simulate the color patterns on mollusk shells, and the
branching pattens of algae. Spiral waves, such as those of the Belousov-Zhabotinski
reaction, and interdigitating patterns, resembling ocular dominance stripes, are
particularly easy to mimic and emerge from a variety of automata.

Cellular automata are attractive for biological simulation because they evoke an
immediate image of biological cells, each with a fairly simple repertoire of behaviors,
but collectively capable of complex morphogenesis.33 Cellular automata can serve
as models of biological pattern-formation systems because biological cells, too, be-
have by interacting only with their immediate neighbors, while obeying some set of
internal "rules." The complex patterns that appear during development are emer-
gent properties of the interaction of those rules with their cellular and chemical
environment. 17 Many theoretical biologists are, however, reluctant to accept cellu-
lar automata models because the formal rules are difficult to analogize to known
biological processes, and because there exist as yet no general methods for translat-
ing biological interactions into a table of local rules. Thus, while cellular automata
can produce biologically realistic patterns, they often offer little insight into the
biological process. In other words, getting the right pattern is of no use, if it is
obtained for the wrong reason (a caveat that applies, obviously, to all theoretical
modeling in biology).

Cellular automata can, however, be easily extended to increase their biological
realism. Each point (or cell) in an array can be assumed to take on a continuous
range of values, and can possess values in more than one variable. The rules by
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which these values change can reflect the interactions between cells, such as recep-
tor binding, competition, or diffusion, and any number of biochemical reactions.
Clearly, with such extensions cellular automata begin to resemble the methods
used for numerical simulation. The main difference is that cellular automata do
not attempt to model a differential equation (though they may). Such complex
automata are useful for biologists because they can directly model communication
between cells, and they allow examination of the consequences of qualitative and
quantitative rules of interaction.

SIMULATION AND MIMICRY

Cellular automata, like reaction-diffusion systems, are useful only to the extent
that they give insights into the biology of the system that is being simulated.
In this regard it is perhaps useful to make a distinction between simulation and
mimicry. In simulation the theoretical model grasps and accurately summarizes the
principles behind the process being simulated, while in mimicry the model is wrong
even though it produces the right kind of pattern. Mimicry in theoretical modeling
commits what statisticia-is would call a type 2 error: accepting a false hypothesis,
or in this case, getting the right answer for the wrong reason.

Unfortunately, much modeling in theoretical developmental biology appears at
present to be mimicry. In developmental modeling it is easy to get the right kinds
of pattern for the wrong reason because certain categories of biologically reasonable
patterns (zebra stripes, ocular dominance stripes, sea shell patterns) emerge readily
from a variety of reaction-diffusion and cellular automata models. In most modeled
systems, we simply do not know enough about the developmental physiology to
make sensible choices between alternative models, and, even when we can imagine
only one model mechanism, we cannot be sure it has captured the essence of the
underlying process.

In order for a model to be biologically useful, it must obviously incorporate as
much information as possible aboutL the developmental physiology of the system.
But that is generally not sufficient. In order to have reasonable assurance that
a model has captured the essence of a process, it must produce a pattern whose
details resemble those of the morphology being modeled, it must also reproduce in
its dynamics reasonable portions of the ontogenetic transformation that the real
pattern undergoes, and because morphological evolution is gradualistic, it must be
able to produce by simple changes of parameter values (and not by adding more
terms to the model) a range of diversity of the pattern identical to that found to
occur in nature. Few models meet these expectations.
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PATTERN FORMATION ON BUTTERFLY WINGS
Here we briefly discuss pattern formation on the wings of butterflies as a concrete
example of color pattern formation because it is one of the few systems that meets
the expectations of physiology, detail, ontogeny, and diversity, mentioned above. It
has the added advantage that the patterns are strictly two dimensional, exhibit an
evolved system of homologous elements with transformations across the thousands
of species of butterflies, and can be easily modeled without having to collapse any
dimensions. This system has provided a variety of insights into the way in which
developmental processes change during morphological evolution."8

d (6•
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FIGURE 11 The
nymphalid ground plan.

Y h This is a diagrammatic
representation of the
general distribution of
pattern elements (labeled
b-j) on the wings of

UV butterflies. The pattern
elements are arranged in
serially homologous series
that repeat from wing
cell to wing cell. (From
Nijhout'S; reprinted by
permission of the author.)
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FIGURE 12 Hypothetical evolution of the nymphalid ground plan from ancestors with a
few simple uncompartmentalized symmetry systems.

The color patterns of butterflies are all variants on a theme of homologies called
the nymphalid ground plan (Figure 11). -he entire diversity of color patterns comes
about through the selective expression and modification of the individual pattern
elements that make up the ground plan. The wing pattern is compartmentalized
into two developmentally independent systems. First, the overall pattern is divided
into three parallel symmetry systems: the basal symmetry system (elements b and
c, in Figure 11), the central symmetry system (elements d and f), and the border
symmetry system (elements g and i). In the centers of the latter two systems. there
are two additional pattern elements, the discal spot (element e) and the border
ocelli (element h). Secondly, the development of the elements of these symmetry
systems within a given wing cell is uncoupled from that in adjoining wing cells. As
a consequence of this developmental isolation, each element of the pattern has been
free to evolve morphologically with nearly complete independence from the other
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pattern elements. The overall wing patt-c:= is thus a mosaic of semi-independent
pattern elements that can be modified and arranged on the wing surface to provide
a variety of optical effects, ranging from camou'age to mimicry.18

The presumptive evolution of the nymphalid ground plan is illustrated dia-
grammatically in Figure 12. The ancestor is believed to have had a simple pattern
with a single symmetry system, as is found in many species of moths today. Evolu-
tion of complexity progressed by the addition of more symmetry systems (Figures
12(b)-(d)), possibly by a system that sets up an increasing number of standing
waves on the wing. The number of symmetry systems became stabilized at three,
and each gradually evolved a distinctive morphology (Figures 12(e)-(h)), probably
due to the evolution of a proximo-distal gradient or di-ontinuity in some variables
that interact with the wavp pattern. In the immediaL -i.acestors of the butterflies,
the wing veins became boundaries to pattern formation and the pattern became
compartmentalized to each wing cell (Figures 12(f)-(h)). With this developmental
isolation the pattern elements in each wing cell became free to diverge both in
position (Figures 12(f) and '6)) and morpnclogy (Figures 12(g) and (h)).

The developmental compartmentalization of the wing pattern greatly facilitates
its modeling, because each pattern element in eawh wing cell can be modeled sep-
arately without having to worry abot possibie intoractions with distant patterns.
Nijhout 6" 8a has shown that a relatively simple model can account for nearly the
entire diversity of shapes of pattern elements that are found among the thousands
of species of butterflies. The model generates the pattern in two steps, in accordance
with what is known about the developmental physiology of pattern formation in
this system. The first step establshes a system of line and point sources of a dif-
fusible substance, and the second step establishes the pattern as a simple threshold
on the diffusion gradients produced by those sources.

Point Sources Line Sources

*A

E

FIGURE 13 Distribution of sources
Et (or sinks) that can produce nearly

the entire diversity of patterns found
F F in the wing cells of butterflies. The

rectangular field represents a single
wing cell in which vein make up the
two long side boundary and the top

D C D G boundary. (From Nijhout' 8 ; roprinted
by permission of the author.)
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FIGURE 14 The lateral inhibition model of Meinhardt (Eq. (4)) can produce the
diversity of source distribution shown in Figure 14 by varying boundary conditions
and reaction constants. The series shown is a typical time sequence of activator
concentration which gradually transforms from a high ridge to a series of point sources
on the wing-cell midline. (From Nijhout's; reprinted by permission of the author.)

The distribution of diffusion sources (and barriers to diffusion) in real butterfly
wings is known from experimental perturbation studies and from studies of the
comparative morphology of normal and aberrant patterns.'3 When activated singly
or in pairs, this distribution of sources (Figure 13) has been shown, by simulation,
to be capable of producing nearly the entire diversity of pattern shapes found in
the butterflies.
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Sources in the exact locations shown in Figure 13, are readily produced by the
Meinhardt"2 lateral inhibition system. and by no other reaction-diffusion system
that has been examined so far. 6 The Meinhardt system produces the right patterns,
but only when provided with fixed boundary conditions for the activator on three
of the four sides of the rectangle that simulates a wing cell. These are the three
locations of the wing veins around a typical wing cell. The wing veins afford the
only means by which material can enter or leave the developing wing, and provide
reasonable physical constant-level sources for materials, which are modeled as fixed
boundaries.

Perhaps the most important fcature of the Meinhardt lateral inhibition system
implemented in this way is the dynamic progression of source distributions it pro-
duces as the reaction-diffusion progresses (Figure 14). This progression of sources
produces patterns that closely resemble the diversity of color patterns seen among
closely related species in several genera of butterflies. Diversity of this type in
essence constitutes a heterochrony. This example illustrates that the most interest-
ing feature of reaction-diffusion systems, from a biological perspective, is probably
not the steady-state patterns to which a system tends, but the dynamic progression
of patterns well before the steady state is reached. Development, like most of biol-
ogy, is not an equilibrium phenomenon. Dynamically changing patterns like those
of evolving reaction-diffusion systems may provide useful models for the progression
of determinative processes ouring development.
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Artificial Life

Artificial Life complements the traditional analytical biological methods
by attempting to synthesize lifelike behaviors within computers and other
"artificial" media. The primary motivations driving this synthetic approach
are (1) to contribute to a truly general theoretical biology by extending the
empirical data base beyond the carbon-based life that has evolved ,,n the
planet Earth, and (2) to apply fundamental principles of biological form
and function to the solution of hard problems in science and engineering.

1. THE BIOLOGY OF POSSIBLE LIFE
Biology is the scientific study of life-in principle anyway. In practice, biology is the
scientific study of life on Earth based on carbon-chain chemistry. There is nothing
in its charter that restricts biology to the study of carbon-based life; it is simply
that this is the only kind of life that has been available to study. Thus. heoretical
biology has long faced the fundamental obstacle that it is impossible to derive
general principles from single examples.

1991 Lectures in Complex Systems, SFI Studies in the Sciences of Complexity,
Lect. Vol. IV, Eds. L. Nadel & D. Stein, Addison-Wesley, 1992 189
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Without other examples it is extremely difficult to distinguish essential proper-
ties of life-properties that must be shared by any living system in princzple-from
properties that may be incidental to life, but which happen to be universal to life
on Earth due solely to a combination of local historical accident and common ge-
netic descent. Since it is quite unlikely that organisms based on different physical
chemistries will present themselves to us for study in the foreseeable future, our
only alternative is to try to synthesize alternative life-forms ourselves-Artificial
Life: life made by man rather than by nature.

1.1 ARTIFICIAL LIFE

Biology has traditionally started at the top, viewing a living organism as a complex
biochemical machine, and has worked analytically down from there through the
hierarchy of biological organization--decomposing a living organism into organs,

LUs, cells, organelles, and finally molecules-in its pursuit of the mechanisms
aife. Analysis means "the separation of an intellectual or substantial whole into

constituents for individual study." By composing our individual understandings of
the dissected component parts of living organisms, traditional biology has provided
us with a broad picture of the mechanics of life on Earth.

But there is more -o life than mechanics-there is also dynamics. Life de-
pends critically on principles of dynamical self-organization that have remained
largely untouched by traditional analytic methods. There is a simple explanation
for this-these self-organizing dynamics are fundamentally nonlinear phenomena,
and nonlinear phenomena in general depend critically on the interactions between
parts: they necessarily disappear when parts are treated in isolation from one an-
other, which is the basis for the analytic method.

Rather, nonlinear phenomena are most appropriately treated by a synthetic
approach. Synthesis means "the combining of separate elements or substances to
form a coherent whole." In nonlinear systems, the parts must be treated in each
other's presence, rather than independently from one another, because they behave
very differently in each other's presence than we would expect from a study of the
parts in isolation.

Artificial Life is simply the synthetic approach to biology: rather than take living
things apart, Artificial Life attempts to put living things together.

But Artificial Life is more than this. To understand the overall aims of the
Artificial Life enterprise, one needs to do the following. (1) Broaden the scope of
the attempts, beyond simply recreating "the living state," to the synthesis of any
and all biological phenomena, from viral self-assembly to the evolution of the entire
biosphere. (2) Couple this with the observation that there is no reason, in principle,
why the parts we use in our attempts to synthesize these biological phenomena need
be restricted to carbon-chain chemistry. (3) Note that we expect the synthetic ap-
proach to lead us not only to, but quite often beyond, known biological phenomena:
beyond life-as-we-know-it into the realm of life-as-it-could-be.
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Thus, for example, Artificial Life involves attempts to (1) synthesize the process
of evolution (2) in computers, and (3) will be interested in whatever emerges from
the process, even if the results have no analogs in the "natural" world. It is certainly
of scientific interest to know what kinds of things can evolve in principle, whether
or not they happened to do so here on Earth.

1.2 Al AND THE BEHAVIOR GENERATION PROBLEM

Artificial Life is concerned with generating lifelike behavior. Thus, it focuses on the
problem of creating behavior generators. A good place to start is to identify the
mechanisms by which behavior is generated and controlled in natural systems, and
to recreate these mechanisms in artificial systems. This is the course we will take
later in this paper.

The related field of Artificial Intelligence is concerned with generating intel-
ligent behavior. It, too, focuses on the problem of creating behavior generators.
However. although it initially looked to natural intelligence to identify its underly-
ing mechanisms, these mechanisms were not known, nor are they today. Therefore,
following an initial flirt with neural nets, Al became wedded to the only other known
vehicle for the generation of complex behavior: the technology of serial computer
programming. As a consequfnce, from the very beginning artificial intelligence em-
braced an underlying methodology for the generation of intelligent behavior that
bore no demonstrable relationship to the method by which intelligence is generated
in natural systems. In fact, Al has focused primarily on the production of intelligent
solutions rather than on the production of intelligent behavior. There is a world of
difference between these two possible foci.

By contrast, Artificial Life has the great good fortune that many of the mech-
anisms by which behavior arises in natural living systems are known. There are
still many holes in our knowledge, but the general pictur, in place. Therefore,
Artificial Life can start by recapturing natural life and has to resort to the
sort of initial infidelity that is now coming back to haunt Al.

The key insight into the natural method of behavior gene; is gained by
noting that nature is fundamentally parallel. This is reflected in tii. 'itecture"
of natural living organisms, which consist of many millions of parts. :tch one of
which has its own behavioral repertoire. Living systems are highly distributed and
quite massively parallel. If our models are to be true to life, they must also be
highly distributed and quite massively parallel. Indeed, it is unlikely that any other
approach will prove viable.

2. HISTORICAL ROOTS OF ARTIFICIAL LIFE
Mankind has a long history of attempting to map the mechanics of his contemporary
technology onto the workings of nature, trying to understand the latter in terms of
the former.
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It is not surprising, therefore, that early models of life reflected the principal
technology of their era. The earliest models were simple statuettes and paintings-
works of art which captured the static form of living things. These statues were
provided with articulated arms and legs in the attempt to capture the dynamic form
of living things. These simple statues incorporated no internal dynamics, requiring
human operators to make them behave.

The earliest mechanical devices that were capable of generating their own
behavior were based on the technology of water transport. These were the early
Egyptian water clocks called Clepsydra. These devices made use of a rate-limited
process-in this case the dripping of water through a fixed orifice-to indicate the
progression of another process-the position of the sun. Ctesibius of Alexandria
developed a water-powered mechanical clock around B.C. 135 which employed a
great deal of the available hydraulic technology-including floats, a siphon, and a
water-wheel-driven train of gears.

In the first century A.D., Hero of Alexandria produced a treatise on Pneumatics,
which described, among other things, various simple gadgets in the shape of animals
and humans that utilized pneumatic principles to generate simple movements.

However, it was really not until the age of mechanical clocks that artifacts
exhibiting complicated internal dynamics became possible. Around 850 A.D., the
mechanical escapement-.was invented, which could be used to regulate the power
provided by falling weights. This invention ushered in the great age of clockwork
technology. Throughout the Middle Ages and the Renaissance, the history of tech-
nology is largely bound up with the technology of clocks. Clocks often constituted
the most complicated and advanced application of the technology of an era.

Perhaps the earliest clockwork simulations of life were the so-called "Jacks,"
mechanical "men" incorporated in early clocks who would swing a hammer to strike
the hour on a bell. The word "jack" is derived from "jaccomarchiadus," which means
"the man in the suit of armour." These accessory figures retained their popularity
even after the spread of clock dials and hands-to the extent that clocks were
eventually developed in which the function of timekeeping was secondary to the
control of large numbers of figures engaged in various activities, to the point of
acting out entire plays.

Finally, clockwork mechanisrng appeared which had done away altogether with
any pretense at timekeeping. These "automata" were entirely devoted to imparting
lifelike motion to a mechanical figure or animal. These mechanical automaton simu-
lations of life included such things as elephants, peacocks, singing birds, musicians,
and even fortune tellers.

This line of development reached its peak in the famous duck of Vaucanson,
described as "an artificial duck made of gilded copper who drinks, eats, quacks,
splashes about on the water, and digests his food like a living duck."M' Vaucanson's
goal is captured neatly in the following description:

M1AU quotes concerning theq-, vrn'hvnical ducks are from Chapuis.5
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In 1735 Jacques de Vaucanson arrived in Paris at the age of 26. Under
the influence of contemporary philosophic ideas. he had tried, it seems. to

reproduce life artificially,.

Unfortunately, neither the duck itself nor any technical descriptions or diagrams
remain that would give the details of construction of this duck. The complexity of
the mechanism is attested to by the fact that one single wing contained over -IN
articulated pieces.

One of those called upon to repair Vaucansons (luck in later years was a me-
chanician" named Reichsteiner. who was so impressed with it that he went on to
build a duck of his own--also now lost----which was exhibited in 1847. Here is an
account of this duck's operation from the newspaper Das Freze Weot:

After a light touch on a point on the b)ase. the duck in the most natural
way in the world begins to look around him. eyeing the audience with
an intelligent air. Ilis lord and master, however, apparently interprets this
differently, for soon he goes off to look for something for the bird to eat. No
sooner has he filled a dish with oatmeal porridge than our famished friend
plunges his beak deep into it, showing his satisfaction by some characteristic
movements of his tail. The way in which he takes the porridge and swallows
it greedily is extraordinrarily true to life. In next to no time the basin has

-en half emptied. although on several occasions the bird. as if alarmed by
some unfamiliar noises, has qised his head and glanced curiously ;.-,)und
him. After this. satisfied with his frugal meal. he stands up and begins
to flap his wings and to stretch himself while expressing his gratitude by
several contented quacks. But most astonishing of all are the contractions
of the bird's body clearly showing that his stomach is a little upset by this
rapid meal and the effects of a painful digestion become obvious. However.

the bravw little bird holds out, and after a few moments we are convinced
in the most concrete manner that he has overcome hi- internai di. Fitulties.
'[he truth is that the smell which now spreads through the room becomes
almost unbearable. We wish to express to the artist inventor the pleasure
which his demonstration gave to us.

Figure 1 shows two views of one of the ducks--- here is some controversy .as to
whether it is Vaucanson's or Reichsteiner's. The mechanism inside the dluck would
have been completely covered with feathers and the controlling mechanism in the
box below would have been covered tup as well.
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FIGURE 1 Two views otjhe mechanical duck attributed to Vaucanson. Printed in
Automata: A Historical and Technolog:cal Study by Alfred Chapuis and Edmon Droz
(B. A. Batsford Ltd.); reprinted by permission of the publisher.

2.1 THE DEVELOPMENT OF CONTROL MECHANISMS

Out of the technology of the clockwork regulation of automata came the more
general-and perhaps ultimately more important-technology of process control.
As attested to in the descriptions of the mechanical ducks, some of the clockwork
mechanisms had to control remarkably complicated actions on the part of the au-
tomata, not only powering them but sequencing them as well.

Control mechanisms evolved from early, simple devices-such as a lever at-
tached to a wheel which converted circular motion into linear motion-to later,
more complicated devices-such as whole sets of cams upon which would ride
many interlinked mechanical arms, giving rise to extremely complicated automaton
behaviors.

Eventually programmable controllers appeared, which incorporated such de-
vices as interchangeable cams, or drums with movable pegs, with which one could
program arbitrary sequences of actions on the part of the automaton. The writ-
ing and picture drawing automata of Figure 2, built by the Jaquet-Droz family,
are examples of programmable automata. The introduction of such programmable
controllers was one of the primary developments on the road to general purpose
computers.
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FIGURE 2 Two views of a drawing automaton built by the Jaquet-Droz family. Printed
in A.utomata: A Ihstorical and T7chnologial Study by Alfred Chapuis and Edmon
Droz (B. A. Batsford Ltd.); reprinted by permission of the publisher.

2.2 ABSTRACTION OF THE LOGICAL "FORM" OF MACHINES

During t he early part of the twentieth century. the formal application of logic to the
mechanical process of arithmetic lead to the abstract formulation of a "procedure."
The work of Church, Kleene. G6del, Turing, and Post formalized the notion of a
logical sequence of steps, leading to the realization that the essence- of a mechan-
ical process- lhe "t hing" responsible for its d(vnamic behavior -is not a thing at
all. but an abstract control structure, or ".program" -a sequence of simple actions
selected from a finite repertoire. Furthermore. it, was recognized that the essential
features of this control strructure could be captured within an abstract set of rules -

a formal specification without regard to the material out of which the machine
was constructed. The "-logical form" of a machine wa~s separated from its material
basis of construction. and it was found that "nmachineness'" was a property of the
former, not of the latter. Today, the formal equivalent of a "'machine" is an algo-
rithm: the logic underlying the dynamics of an automaton, regardless of the details
of its material construction. We now have many formal methods for the specifica-
tion and operation of abstract machines: such as programming languages, formal
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language theory, automata theory, recursive function theory, etc. All of these have
been shown to be logically equivalent.

Once we have learned to think of machines in terms of their abstract. formal
specifications, we can turn around and view abstract, formal specifications a po-
tential machines. In mapping the machines of our common experience to formal
specifications. we have by no means exhausted the space of possible specifications.
Indeed, most of our individual machines rn-ip to a very small subset of the space of
specifications-a subset largely characterized by methodical. boring. uninteresting
dynauics.

2.3 GENERAL PURPOSE COMPUTERS

Various threads of technological development-programmable controllers, calculat-
ing engines, and the formal theory of machines-have come together in the general
purpose, stored program computer. Programmable computers are extremely gen-
eral behavior generators. They have no intrinsic behavior of their own. Without
programs, they are like formless matter. They must be told how to behave. By
submitting a program to a computer-that is: by giving it a formal specification
for a machine-we are telling it to behave as if it were the machine specified by
the program. The computer then **emulates" that more specific machine in the
performance of the desired task. Its great power lies in its plasticity of behavior.
If we can provide a step-by-step specification for a specific kind of behavior, the
chameleon-like computer will exhibit that behavior. Computers should be viewed
as second-order machines--given the formal specification of a first-order machine.
they will "become" that machine. Thus, the space of possible machines is directly
available for study, at the cost of a mere formal description: computers "realize"
abstract machines.

2.4 FORMAL LIMITS OF MACHINE BEHAVIORS

Although computers, and by extension other machines, are capable of exhibiting a
bewilderingly wide variety of behaviors, we must face two fundamental linutations
on the kinds of behaviors that we can expect of computers.

The first limitation is one of computability In principle. There are certain be-
haviors that are "uncomputable"--behaviors for which no formal specification can
be given for a machine that will exhibit that behavior. The classic example of this
sort of limitation is Turing's famous Halting Problem: can we give a formal specifica-
tion for a machine which, when provided with the description of any other machine
together with its initial state, will-by inspection alone-determine whether or not
that machine will reach its halt state? Turing proved that no such machine can
be specified. In particular, Turing showed that the best that such a proposed ma-
chine could do would be to emulate the given machine to see whether or not it
halted. If the emulated machine halted, fine. However, the emulated machine might
run forever without halting, and therefore the emulating machine could not answer
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whether or not it would halt. Rice and others have extended this undecidability

result to the determination-by inspection alone-of any nontrivial property of the

future behavior of an arbitrary machine.1 4

The second limitation is one of computability in practice. There are many be-

haviors for which we do not know how to specify a sequence of steps that will cause

a computer to exhibit that behavior. We can automate what we can explain how to

do, but there is much that we cannot explain how to do. Thus, although a formal

specification for a machine that will exhibit a certain behavior may be possible in

principle, we have no formal procedure for producing that formal specification in

practice, short of a trial and error search through the space of possible descriptions.
We need to separate the notion of a formal specification of a machine-that is,

a specification of the logical structure of the machine-from the notion of a formal
specification of a machine's behavior-that is, a specification of the sequence of
transitions that the machine will undergo. In general, we cannot derive behaviors
from structure, nor can we derive structure from behaviors.

The moral is: in order to determine the behavior of some machines, there is
no recourse but to run them and see how they behave! This has consequences
for the methods by which we (or nature) go about generating behavior generators
themselves, which we will take up in the section on evolution.

2.5 JOHN VON NEUMANN: FROM MECHANICS TO LOGIC

With the development of the general purpose computer, various researchers turned
their attention from the mechanics of life to the logic of life.

The first computational approach to the generation of lifelike behavior was due

to the brilliant Hungarian mathematician John von Neumann. In the words of his
colleague Arthur W. Burks, von Neumann was interested in the general question[2]:

What kind of logical organization is sufficient for an automaton to repro-
duce itself? This question is not precise and admits to trivial versions as well

as interesting ones. Von Neumann had the familiar natural phenomenon
of self-reproduction in mind when he posed it, but he was not trying to
simulate the self-reproduction of a natural system at the level of genetics
and biochemistry. He wished to abstract from the natural self-reproduction
problem its logical form.

This approach is the first to capture the essence of Artificial Life. To understand

the field of Artificial Life, one need only replace references to "self-reproduction"
in the above with references to any other biological jhenomenon.

In von Neumann's initial thought experiment (his 'kinematic model"), a ma-
chine floats around on the surface of a pond, together with lots of machine parts.
The machine is a universal constructor: given the description of any machine, it
will locate the proper parts and construct that machine. If given a description of

(21From Burks,3 emphasis added.
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itself, it will construct itself. This is not quite self-reproduction, however, because
the offspring machine will not have a description of itself and hence could not go on
to construct another copy. So, von Neumann's machine also contains a description
copier: once the offspring machine has been constructed, the "parent" machine con-
structs a copy of the description that it worked from and attaches it to the offspring
machine. This constitutes genuine self-reproduction.

Von Neumann decided that this model did not properly distinguish the logical
form of the process from the material of the process, and looked about for a com-
pletely formal system within which to model self-reproduction. Stan Ulam--one of
von Neumann's colleagues at Los Alamos[3--suggested an appropriate formalism,
which has come to be known as a cellular automaton (CA).

In brief, a CA consists of a regular lattice of finite automata, which are the
simplest formal models of machines. A finite automaton can be in only one of a
finite number of states at any given time, and its transitions between states from
one time step to the next are governed by a state-transition table: given a certain
input and a certain internal state, the state-transition table specifies the state to
be adopted by the finite automaton at the next time step. In a CA, the necessary
input is derived from the states of the automata at neighboring lattice points. Thus,
the state of an automaton at time t + 1 is a function of the states of the automaton
itself and its immediate-neighbors at time t. All of the automata in the lattice obey
the same transition table and every automaton changes state at the same instant,
time step after time step. CA's are good examples of the kind of computational
paradigm sought after by Artificial Life: bottom-up, parallel, local determination
of behavior.

Von Neumann was able to embed the equivalent of his kinematic model as an
initial pattern of state assignments within a large CA lattice using 29 states per cell.
Although von Neumann's work on self-reproducing automata was left incomplete
at the time of his death, Arthur Burks organized what had been done, filled in the
remaining details, and published it.[*1 Figure 3 shows a schematic diagram of von
Neumann's self-reproducing machine.

Von Neumann's CA model was a constructive proof that an essential charac-
teristic behavior of living things-self-reproduction-was achievable by machines.
Furthermore, he determined that-any such method must make use of the infor-
mation contained in the description of the machine in two fundamentally different
ways:

1. Interpreted, as instructions to be executed in the construction of the offspring.
2. Uninterpreted, as passive data to be duplicated to form the description given

to the offspring.

(3]Ulamn also investigated dynamic models of pattern production and competition.25
[4]Together with a transcription of von Neumann's 1949 lectures at the University of Illinois
entitled "Theory and Organization of Complicated Automata," in which he gives his views on

various problems related to the study of complex systems in general. 26
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FIGURE 3 Schematic diagram of von Neumann's CA self-reproducing configuration.
From Essays on Cellular Automata edited by A. W. Burk (University of Illinois Press,
Urbana, 1970); reprinted by permission of the publisher.

Of course, when Watson and Crick unveiled the structure of DNA, they discovered
that the information contained therein was used in precisely these two ways in the
processes of transcription/translation and replication.

In describing his model, von Neumann pointed out that[1•:

By axiomatizing automata in this manner, one has thrown half of the prob-
lem out the window, and it may be the more important half. One has re-
signed oneself not to explain how these parts are made up of real things,
specifically, how these parts are made up of actual elementary particles, or
even of higher chemical molecules.

C51 From Burks.3
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Whether or not the more important half of the question has been disposed of
depends on the questions we are asking. If we are concerned with explaining how
the life that we know emerges from the known laws of physics and organic-chemistry,
then indeed the interesting part has been tossed out. But, if we are concerned with
the more general problem of explaining how lifelike behaviors emerge out of low-
level interactions within a population of logical primitives, we have retained the
more interesting portion of the question.

3. THE ROLE OF COMPUTERS IN STUDYING LIFE AND
OTHER COMPLEX SYSTEMS
Artificial Intelligence and Artificial Life are each concerned with the application of
computers to the study of complex, natural phenomena. Both are concerned with
generating complex behavior. However, the manner in which each field employs
the technology of computation ,,- 'he pursuit of its respective goals is strikingly
different.

AI has based its underlying methodology for generating intelligent behavior
on the computational paadigm. That is., AI uses the technology of computation
as a model of intelligence. AL, on the other hand, is attempting to develop a new
computational paradigm based on the natural processes that support living organ-
isms. That is, AL uses insights logy to explore the dynamics of interacting
information structures. AL has ... •aopted the computational paradigm as its un-
derlying methodology of behavior generation, nor does it attempt to "explain" life
as a kind of computer program.

One way to pursue the study of artificial life would be to attempt to create life
in vitro, using the same kinds of organic chemicals out of which we are constituted.
Indeed, there are numerous exciting efforts in this direction. This would certainly
teach us a lot about the possibilities for alternative life-forms within the carbon-
chain chemistry domain that could have (but didn't) evolve here.

However, biomolecules are extremely small and difficult to work with, requiring
rooms full of special equipment, replete with dozens of "postdocs" and graduate
students willing to devote the larger part of their professional careers to the per-
fection of electrophoretic gel techniques. Besides, although the creation of life in
vitro would certainly be a scientific feat worthy of note-and probably even a Nobel
prize-it would not, in the long run, tell us much more about the space of possible
life than we already know.

Computers provide an alternative medium within which to attempt to synthe-
size life. Modern computer technology has resulted in machinery with tremendous
potential for the creation of life in silico.

Computers should be thought of as an important laboratory tool for the study
of life, substituting for the array of incubators, culture dishes, microscopes, elec-
trophoretic gels, pipettes, centrifuges, and other assorted wet-lab paraphernalia,
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one simple-to-master piece of experimental equipment devoted exclusively to the
incubation of information structures.

The advantage of working with information structures is that information has
no intrinsic size. The computer is the tool for the manipulation of information.

whether that manipulation is a consequence of our actions or a consequence of the
actions of the information structures themselves. Computers themselves will not
he alive, rather they will support informational universes within which dynanmic
populations of informational "nmolecules" engage in informational "'biochemistry."

This view of computers as workstations for performing scientific experiments
within artificial universes is fairly new. but it is rapidly becoming accepted as a
legitimate, even necessary, way of pursuing science. In the days before computers,
scientists worked primarily with systems whose defining equations could be solved
analytically, and ignored those whose defining equations could not be so solved.
This was largely t he case because, in the absence of analytic solutions. the equations
would have to be integrated over and over again, essentially simulating the time
behavior of the system. Without computers to handle the mundane details of these
calculations, such an undertaking was unthinkable except in the simplest cases.

However, with the advent of computers, the necessary mundane calculations can
be relegated to these idiot-savants, and the realm of numerical simulation is opened
up for exploration. "'Exploration" is an appropriate term for the process, because the
numerical simulation of systems allows one to "explore" the system's beha'vior under
a wide range of parameter settings and initial conditions. The heuri. value of
this kind of experimentation cannot be over-estimated. One often gains tremendous
insight for the essential dynamics of a system by observing its behavior under a wide
range of initial conditions. Most importantly, however, computers are beginning
to provide scientists with a new paradigm for modeling the world. When dealing
with essentially unsolvable governing equations, the primary reason for producing a
formal mathematical model-the hope of reaching an analytic solution by symbolic
manipulation-is lost. Systems of ordinary and partial differential equations are
not very well suited for implementation as computer algorithms. One might expect
that other modeling technologies would be more appropriate when the goal is the
synthesis, rather than the analysis, of behavior.L6]

This expectation is easily borne'out. With the precipitous drop in the cost of
raw computing power, computers are now available that are capable of simulating
physical systems from first principles. This means that it has become possiblefor
example, to model turbulent flow in a fluid by simulating the motions of its con-
stituent particles-not just approximating changes in concentrations of particles at
particular points, but actually computing their motions exactly.7' 2 4

,
28

What does all of this have to do with the study of life? The most surprising les-
son we have learned from simulating complex physical systems on computers is that,
complex behavior need not have complex roots. Indeed, tremendously interesting and

[6]See Toffoli 23 for a good exposition.
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FIGURE 4 The bottom-up versus the top-down approach to modeling complex
systems. Original figure appeared in "Artificial Life" by Christopher Langton, in Artificial
Life edited by C. Langton (Addison-Wesley, Redwood City, 1989).

beguilingly complex behavior can emerge from collections of extremely simple com-
ponents. This leads directly to the exciting possibility that much of the complex
behavior exhibited by nature-especially the complex behavior that we call life-
also has simple generators. Since it is very hard to work backwards from a complex
behavior to its generator, but very simple to create generators and synthesize com-
plex behavior, a promising approach to the study of complex natural systems is
to undertake the general study of the kinds of behavior that can emerge from dis-
tributed systems consisting of simple components (Figure 4).

4. NONLINEARITY AND LOCAL DETERMINATION OF
BEHAVIOR.
4.1 LINEAR VS. NONLINEAR SYSTEMS

As mentioned briefly above, the distinction between linear and nonlinear systems is
fundamental, and provides excellent insight into why the principles underlying the
dynamics of life should be so hard to find. The simplest way to state the distinction
is to say that linear systems are those for which the behavior of the whole is just
the sum of the behavior of its parts, while for nonlinear systems, the behavior of
the whole is more than the sum of its parts.



Artificial Life 203

Linear systems are those which obey the principle of superposition. We can
break up complicated linear systems into simpler constituent parts. and analyze
these parts indepcndently. Once we have reached an understanding of the parts in
isolation, we can achieve a full understanding of the whole system by composing
our understandings of the isolated parts. This is the key feature of linear systems:
by studying the parts in isolation, we can learn everything we need to know about
the complete system.

This is not possible for nonlinear systems, which do not obey the principle
of superposition. Even if we could break such systems up into simpler constituent
parts, and even if we could reach a complete understanding of the parts in isolation,
we would not be able to compose our understandings of the individual parts into
an understanding of the whole system. The key feature of nor'':near systems is that
their primary behaviors of interest are properties of the interactions between parts,
rather than being properties of the parts themselves, and these interaction-based
properties necessarily disappear when the parts are studied independently.

Thus, analysis is most fruitfully applied to linear systems. Analysis has not
proved anywhere near as effective when applied to nonlinear systems: the nonlinear
system must be treated as a whole.

A different approach to the study of nonlinear systems involves the inverse of
analysis: synthesis. Rather-than start with the behavior of interest and attempting
to analyze it into its constituent parts, we start with constituent parts and put
them together in the attempt to synthesize the behavior of interest.

Life is a property of form., not matter, a result of the organization of matter
rather than something that inheres in the matter itself. Neither nucleotides nor
amino acids nor any other carbon-chain molecule is alive-yet put them together
in the right way, and the dynamic behavior that emerges out of their interactions
is what we call life. It is effects, not things, upon which life is based-life is a kind
of behavior, not a kind of stuff-and as such. it is constituted of simpler behaviors,
not simpler stuff. Behaviors themselves can constitute the fundamental parts of
nonlinear systems-virtual parts, which depend on nonlinear interactions between
physical parts for their very existence. Isolate the physical parts and the virtual
parts cease to exist. It is the virtual parts of living systems that Artificia! Life is
after, and synthesis is its primary m~thodological tool.

4.1 THE PARSIMONY OF LOCAL DETERMINATION OF BEHAVIOR

It is easier to generate complex behavior from the application of simple, local rules
than it is to generate complex behavior from the application of complex, global rules.
This is because complex global behavior is usually due to nonlinear interactions
occurring at the local level. With bottom-up specifications, the system computes the
local, nonlinear interactions explicitly and the global behavior, which was implicit
in the local rules, emerges spontaneously without being treated explicitly.

With top-down specifications, however, local behavior must be implicit in global
rules! This is really putting the cart before the horse! The global rules must
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"predict" the effects on global structure of many locai, nonlinear interactions-
something which we have seen is intractable, even impossible, in the general case.
Thus, top-down systems must take computational shortcuts and explicitly deal with
special cases, which results in inflexible, brittle, and unnatural behavior.

Furthermore, in a system of any complexity, the number of possible global
states is astronomically enormous, and grows exponentially with the size of the
system. Systems that attempt to supply global rules for global behavior simply
cannot provide a different rule for every global state. Thus, the global states must be
classified in some manner, and categorized using a coarse-grained scheme according
to which the global states within a category are indistinguishable. The rules of the
system can only be applied at the level of resolution of these categories. There
are many possible ways to implement a classification scheme, most of which will
yield different partitionings of the global state space. Any rule-based system must
necessarily assume that finer-grained differences don't matter, or must include a
finite set of tests for "special cases," and then must assume that no other special
cases are relevant.

For most complex systems, however, fine differences in the global state can
result in enormous differences in global behavior, and there may be no way in
principle to partition the space of global states in such a way that specific fine
differences have the apprpriate global impact.

On the other hand, systems that supply local rules for local behaviors, can
provide a different rule for each and every possibb,' local state. Furthermore, the
size of the local state space can be completely independent of the size of the system.
In local rule-governed systems, each local state, and consequently the global state,
can be determined exactly and precisely. Fine differences in the global state will
result in very specific differences in the local state and, consequently, will affect the
invocation of local rules. As fine differences affect local behavior, the difference will
be felt in an expanding patch of local states, and in this manner-propagating from
local neighborhood to local neighborhood-fine differences in global state can result
in large differences in global behavior. The only "special cases" explicitly dealt with
in locally determined systems are exactly the set of all possible local states, and
the rules for these are just exactly the set of all local rules governing the system

5. BIOLOGICAL AUTOMATA
Organisms have been compared to extremely complicated and finely tuned bio-
chemical machines. Since we know that it is possible to abstract the logical form of
a machine from its physical hardware, it is natural to ask whether it is possible to
abstract the logical form of an organism from its biochemical weLware. rhe neld of
Artificial Life is devoted to the investigation" of this question.

In the following sections we will look at the manner in which behavior is gener-
ated in a bottom-up fashion in living systems. We then generalize the mechanisms



Artificial Life 205

by which this behavior generation is accomplished, so that we may apply them to
the task of generating behavior in artificial systems.

We will find that the essential machinery of living organisms is quite a bit
different from the machinery of our own invention, and we would be quite mis-
taken to attempt to force our preconceived notions of abstract machines onto the
machinery of life. The difference, once again, lies in the exceedingly parallel and
distributed nature of the operation of the machinery of life. as contrasted with the
singularly serial and centralized control structures associated with the machines of
our invention.

5.1 GENOTYPES AND PHENOTYPES

The most salient characteristic of living systems, from the behavior generation
point of view, is the genotype/phenotype distinction. Tile distinction is essentially
one between a specification of machinery-the genotype-and the behavior of that
marhinery-the phenotype.

The genotype is the complete set of genetic instructions encoded in the linear
sequence of nucleotide bases that makes up an organism's DNA. The phenotype
is the physical organism itself-the structures that emerge in space and time as
the result of the interprerttion of the genotype in the context of a particular en-
vironment. The process by which the phenotype develops through time under the
direction of the genotype is called morphogeneszs. The individual genetic instruc-
tions are called genes and consist of short stretches of DNA. These instructions
are "executed"-or expressed-when their DNA sequence is used as a template
for transcription. In the case of protein synthesis, transcription results in a dupli-
cate nucleotide strand known as a messenger RNA-or mRNA-constructed by the
process of base-pairing. This mRNA strand may then be modified in various ways
before it makes its way out to the cytoplasm where, at bodies known as ribosomes,
it serves as a template for the construction of a linear chain of ; -? acIds. The
resulting polypeptide chain will fold up on itself in a complex mani, forming a
tightly packed molecule known as a protein. The finished protein detaches from the
ribosome and may go on to serve as a passive structural element in the cell, or
may have a more active role as an enzyme. Enzymes are the functional molecular
"operators" in the logic of life.

One may consider the genotype as a largely unordered "bag" of instructions,
each one of which is essentially the specification for a "machine" of some sort-
passive or active. When instantiated, each such "machine" will enter into the ongo-
ing logical "fray" in the cytoplasm, consisting largely of local int, -"tions between
other such machines. Each such instruction will be "executed" %%...... its own trig-
gering conditions are met and will have specific, local effects on structures in the
cell. Furthermore, each such instruction will operate within the context of all of the
other instructions that have been-or are being--executed.



206 Christopher G. Langton

The phenotype, then, consists of the structures and dynamics that emerge
through time in the course of the execution of the parallel, distributed "compu-
tation" controlled by this genetic "bag" of instructions. Since gene's interactions
with one another are highly nonlinear, the phenotype is a nonlinear function of the
genotype.

5.2 GENERALIZED GENOTYPES AND PHENOTYPES

In the context of Artificial Life, we need to generalize the notions of genotype and
phenotype, so that we may applv *hem in non-biological situations. We will use
the term generalized genotype -to refer to any largely unordered set
of low-levei rules, and we will 7 ýrm generalized phenotype-or PTYPE-
to refer to the behaviors and/or SU,•,iures that emerge out of the interactions
among these low-level rules when they are activated within the context of a specific
environment. The GTYPE, essentially, is the specification for a set of machines,
while the PTYPE is the behavior that results as the machines are run and interact
with one another.

This is the bottom-up approach to the generation of behavior. A set of entities
is defined, and each entity is endowed with a specification for a simple behavioral
repertoire-a GTYPE--that contains instructions which detail its reactions to a
wide range of local encounters with other such entities or with specific features of
the environment. Nowhere is the behavior of the set of entities as a whole specified.
The global behavior of the aggregate-the PTYPE-emerges out of the collective
interactions among individual entities.

It should be noted that the PTYPE is a multilevel phenomenon. First, there
is the PTYPE associated with each particular instruction-the effect which that
instruction has on an entity's behavior when it is expressed. Second, there is the
PTYPE associated with each individual entity-its individual behavior within the
aggregate. Third, there is the PTYPE associated with the behavior of the aggregate
as a whole.

This is true for natural systems as well. We can talk about the phenotypic trait
associated with a particular gene, ye can identify the phenotype of an individual
cell, and we can identify the phenotype of an entire multi-cellular organism-its
body, in effect. PTYPES should be complex and multilevel. If we want to simulate
life, we should expect to see hierarchical structures emerge in our simulations. In
general, phenotypic traits at the level of the whole organism will be the result of
many nonlinear interactions between genes, and there will be no single gene to
which one can assign responsibility for the vast majority of phenotypic traits.

In summary, GTYPES are low-level rules for behavors-i.e., abstract speci-
fications for "machines"--which will engage in local interactions within a large
aggregate of other such behaviors. PTYPES are the behavors-the structures in
time and space-that develop out of these nonlinear, local interactions (Figure 5).
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FIGURE 5 The relationship between GTYPE and PTYPE. Original figure appeared in
"Artificial Life" by Christopher Langton, in Artificial Life edited by C. Langton (Addison-
Wesley, Redwood City, 1989).

5.3 UNPREDICTABILITY OF PTYPE FROM GTYPE

Nonlinear interactions between the objects specified by the GTYPE provide the
basis for an extremely rich variety oLpossible PTYPES. PTYPES draw on the full
combinatorial potential implicit in the set of possible interactions between low-level
rules. The other side of the coin, however, is that we cannot predict the PTYPES
that will emerge from specific GTYPES, due to the general unpredictatility of
nonlinear systems. If we wish to maintain the property of predictability, then we
must restrict severely the nonlinear dependence of PTYPE on GTYPE, but this
forces us to give up the combinatorial richness of possible PTYPES. Therefore, a
trade-off exists between behavioral richness and predictability (or "programmabil-
ity"). We shall see in the section on evolution that the lack of programmability is
adequately compensated for by the increased capacity for adaptiveness provided by
a rich behavioral repertoire.
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As discussed previously, we know that it is impossible in the general case to
determine any nontrivial property of the future behavior of a sufficiently power-
ful computer from a mere inspection of its program and its initial state alone. 14 A
Turing machine-the formal equivalent of a general purpose computer-can be cap-
tured within the scheme of GTYPE/PTYPE systems by identifying the machine's
transition table as the GTYPE and the resulting computation as the PTYPE. From
this we can deduce that in the general case it will not be possible to determine,
by inspection alone, any nontrivial feature of the PTYPE that will emerge from a
given GTYPE in the context of a particular initial configuration. In general, the
only way to find out anything about the PTYPE is to start the system up and
watch what happens as the PTYPE develops under control of the GTYPE and the
environment.

Similarly, it is not possible in the general case to determine what specific al-
terations must be made to a GTYPE to effect a desired change in the PTYPE.
The problem is that any specific PTYPE trait is, in general, an effect of many,
many nonlinear interactions between the behavioral primitives of the system (an
"epistatic trait" in biological terms). Consequently, given an arbitrary proposed
change to the PTYPE, it may be impossible to determine by any formal procedure
exactly what changes would have to be made to the GTYPE to effect that-and
only that-change in the -TYPE. It is not a practically computable problem. There
is no way to calculate the answer-short of exhaustive search-even though there
may be an answer!(71

The only way to proceed in the face of such an unpredictability result is by
a process of trial and error. However, some processes of trial and error are more
efficient than others. In natural systems, trial and error are interlinked in such a
way that error guides the choice of trials under the process of evolution by natural
selection. It is quite likely that this is the only efficient, general procedure that could
find GTYPES with specific PTYPE traits when nonlinear functions are involved.

6. RECURSIVELY GENERATED OBJECTS
In the previous section, we described the distinction between genotype and pheno-
type, and we introduced their generalizations in the form of GTYPES and PTYPES.
In this section, we will review a general approach to building GTYPE/PTYPE sys-
tems based on the methodology of recursively generated objects.

A major appeal of this approach is that it arises naturally from the GTYPE/
PTYPE distinction: the local developmental rules-the recursive description itself-
constitute the GTYPE, and the developing structure-the recursively generated
object or behavior itseif-constitutes the PTYPE.

[71 An example in biology would be: What changes would have to be made to the genome in order

to produce six fingers on each hand rather than five?
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N'For a more detailed review, see the the book The Algorithmir- Beautyll of Plants.- ,0
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When applied to the initial seed structure "A," the following structural history
develops (each successive line is a successive time step):

time structure rules applied ML to R)

0 A (initial "seed")
1 C B (rule 1 replaces A with CB)
2 D A A (rule 3 replaces C with DA A rule 2 replaces B with A)
3 C C B C B (rule 4 replaces D with C & rule 1 replaces the two
4 ... (etc)... A's with CB's)

And so forth.

The "PTYPE" that emerges from this kind of recursive application of a simple.
local rewriting rule can get extremely complex. These kinds of grammars (whose
rules replace single symbols) have been shown to be equivalent to the operation of
finite state machines. With appropriate restrictions, they are also equivalent to the
"regular languages" defined by Chomsky.

BRANCHING GROWTH L-systems incorporate meta-symbols to represent branching
points, allowing a new line of symbols to branch off from the main 'stem."

The following grammar produces branching structures. The " )" and "
notations indicate left and right branches, respectively, and the strings within them
indicate the structure of the branches themselves.

The rules-or GTYPE:

1) A -> C[B]D
2) B -> A
3) C -> C
4) D -> C(E)A
5) E -> D

When applied to the starting structure "A," the following sequence develops (using
linear notation):

time structure rules applied (L to R)

0 A initial "seed".
1 C[B]D rule 1.
2 C(A]C(E)A rules 3,2,4.
3 C[C[B]D]C(D)C[B]D rules 3,1,3,5,1.

4 C[C[A]C(E)A]C(C(E)A)C[1]C(E)A rules 3,3,2,4,3,4,3,2,4.

In two dimensions, the structure develops as follows:
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FIGURE 6 An L-system plant grown from rules incorporating graphical rendering
information. Original figure appeared in The Algoiithmic Beauty of Plants. (Berlin:
Springer-Verlag, 1991 ).20
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I /
DB
I/ /

EI DC D
\1 \1 /_B_ -- >(etc)

DB CA --- > CC

A/ --- > I/ I/
I I I I
A --- > C C C

I I I I

t 0 1 2 3 ... and so on...

Note that at each step, every symbol is replaced, even if just by another copy of
itself. This figure shows the result of growing a structure using the rules shown,
which contain graphical rendering information in addition to the usual "structural"
information.

SIGNAL PROPAGATION In order to propagate signals along a structure, one must
have something more than just a single symbol on the left-hand side of a rule.
When there is more tharn-one symbol on the left-hand side of a rule, the rules are
context sensitive-i.e., the "context" within which a symbol occurs (the symbols
next to it) are important in determining what the replacement string will be. The
next example illustrates why this is critical for signal propagation.

In the following example, the symbol in "{-}'s" is the symbol (or string of
symbols) to be replaced, the rest of the left-hand side is the context, and the
symbols "[" and "]" indicate the left and right ends of the string, respectively.

Suppose the rule set contains the following rules:

1) [{C} -> C a "C" at the left-end of the string remains a "C."
2) C{C} -> C a "C" with a "C" to its left remains a "C."
3) *{C} -> * a "C" with an "*" to its left becomes an "*."
4) {*}C -> C an "*" with a "C'•. to its right becomes a "C."
5) {*}] -> * an "*" at the right end of the string remains an "*

Under these rules, the initial structure "*CCCCCCC" will result in the "*" being
propagated to the right, as follows:

time structure

0 *CCcCCCC

1 C*CxCCC
2 CC*CCCCC
3 CCC*CCOC
4 CCCC*COC
5 CCCCC*OC

6 CCcCCCC
7 cccccC*
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This would not be possible without taking the "context" of a symbol into ac-
count. In general, these kinds of grammars are equivalent to Chomsky's "context-
sensitive" or "Turing" languages, depending on whether or not there are any re-
strictions on the kinds of strings on the left- and right-hand sides.

The capacity for signal propagation is extremely important, for it allows ar-
bitrary computational processes to be embedded within the structure, which may
directly affect the structure's development. The next example demonstrates how
embedded computation can affect development.

6.2 EXAMPLE 2: CELLULAR AUTOMATA

Cellular automata (CA) provide another example of the recursive application of a
simple set of rules to a structure. In CA, the structure that is being updated is
the entire universe: a lattice of finite automata. The local rule set-the GTYPE-
in this case is the transition function obeyed homogeneously by every automaton
in the lattice. The local context taken into account in updating the state of each
automaton is the state of the automata in its immediate neighborhood. The tran-
sition function for the automata constitutes a local physics for a simple, discrete
space/time universe. The universe is updated by applying the local physics to each
local "cell" of its structure-over and over again. Thus, although the physical struc-
ture itself doesn't develop over time, its state does.

Within such universes, one can embed all manner of processes, relying on the
context sensitivity of the rules to local neighborhood conditions to propagate infor-
mation around within the universe "meaningfully." In particular, one can embed
general purpose computers. Since these computers are simply particular configura-
tions of states within the lattice of automata, they can compute over the very set
of symbols out of which they are constructed. Thus, structures i.. this universe can
compute and construct other structures, which also may compute and construct.

For example, here is the simplest known structure that can reproduce itself:

22222222

2170140142
2 0 2 2 22 2 2 0 2
272 212
212 212
202 212
272 212
21222222122222

20710710711 1 112
2222222222222

Each number is the state of one automaton in the lattice. Blank space is pre-
sumed to be in state "0." The "2"-states form a sheath around the "l"-state data
path. The "7 0" and "4 0" state pairs constitute signals embedded within the data
path. They will propagate counterclockwise around the loop, cloning off copies
which propagate down the extended tail as they pass the T-junction between loop
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and tail. When the signals reach the end of the tail, they have the following effects:
each "7 0" signal extends the tail by one unit, and the two "4 0" signals construct
a left-hand corner at the end of the tail. Thus, for each full cycle of the instructions
around the loop, another side and corner of an "offspring-loop" will be constructed.
When the tail finally runs into itself after four cycles, the collision of signals results
in the disconnection of the two loops as well as the construction of a tail on each
of the loops.

After 151 time steps, this system will evolve to the following configuration:

2

212

272

202
212

222222272 22222222

2111701702 2170140142
2122222212 2022222202

212 272 272 212
212 202 212 212
242 212 202 212
212 272 272 212
20222--2 2202 21222222122222
2410710712 207107107111112

22222222 2222222222222

Thus, the initial configuration has succeeded in reproducing itself.
Each of these loops will go on to reproduce itself in a similar manner, giving

rise to an expanding colony of loops, growing out into the array.
These embedded self-reproducing loops are the result of the recursive appli-

cation of a rule to a seed structure. In this case, the primary rule that is being
recursively applied constitutes the "physics" of the universe. The initial state of
the loop itself constitutes a little "computer" under the recursively applied physics
of the universe: a computer whose program causes it to construct a copy of itself.
The "program" within the loop computer is also applied recursively to the growing
structure. Thus, this system really involves a double level of recursively applied
rules. The mechanics of applying one recursive rule within a universe whose physics
is governed by another recursive rule had to be worked out by trial and error. This
system makes use of the signal propagation capacity to embed a structure that
itself computes the resulting structure, rather than having the "physics" directly
responsible for developing the final structure from a passive seed.

This captures the flavor of what goes on in natural biological development: the
genotype codes for the constituents of a dynamic process in the cell, and it is this
dynamic process that is primarily responsible for mediating-or "computing"--the
expression of the genotype in the course of development.
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6.3 EXAMPLE 3: FLOCKING "BOIDS"

The previous examples were largely concerned with the growth and development of
structural PTYPES. Here, we give an example of the development of a behavioral
PTYPE.

5,5

/ : /

FIGURE 7 A flock of "Boids" negotiating a field of columns. Sequence generated by
Criag Reynolds. Original figure appeared in "Artificial Life" by Christopher Langton, in
Artificzial Life edited by C. Langton (Addison-Wesley, Redwood City, 1989).
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Craig Reynolds has implemented a simulation of flocking behavior.2 2 In this
model-which is meant to be a general platform for studying the qualitatively sim-
ilar phenomena of flocking, herding, and schooling-one has a large collection of
autonomous but interacting objects (which Reynolds refers to as "Boids"), inhab-
iting a common simulated environment.

The modeler can specify the manner in which the individual Boids will respond
to local events or conditions. The global behavior of the aggregate of Boids is strictly
an emergent phenomenon, none of the rules for the individual Boids depend on
global information, and the only updating of the global state is done on the basis
of individual Boids responding to local conditions.

Each Boid in the aggregate shares the same behavioral "tendencies":

"* to maintain a minimum distance from other objects in the environment, in-
cluding other Boids,

"* to t,-,atch velocities with Boids in its neighborhood, and
"* to move toward the perceived center of mass of the Boids in its neighborhood.

These are the only rules governing the behavior of the aggregate.
These rules, then, constitute the generalized genotype (GTYPE) of the Boids

system. They say nothing about structure, or growth and development, but they
determine the behavior-of a set of interacting objects, out of which very natural
motion emerges.

With the right settings for the parameters of the system, a collection of Boids
released at random positions within a volume will collect into a dynamic flock,
which flies around environmental obstacles in a very fluid and natural manner,
occasionally breaking up into sub-flocks as the flock flows around both sides of an
obstacle. Once broken up into sub-flocks, the sub-flocks reorganize around their
own, now distinct and isolated centers of mass, only to re-merge into a single flock
again when both sub-flocks emerge at the far side of the obstacle and each sub-flock
feels anew the "mass" of the other sub-flock (Figure 7).

The flocking behavior itself constitutes the generalized phenotype (PTYPE)
of the Boids system. It bears the same relation to the GTYPE as an organism's
morphological phenotype bears to its molecular genotype. The same distinction
between the specification of machinery and the behavior of machinery is evident.

6.4 DISCUSSION OF EXAMPLES

In all of the above examples, the recursive rules apply to local structures only, and
the PTYPE---structural or behavioral-that results at the global level emerges out
of all local activity taken collectively. Nowhere in the system are there rules for
the behavior of the system at the global level. This is a much more powerful and
simple approach to the generation of complex behavior than that typically taken in
Al, for instance, where "expert systems" atternpt to provide global rules for global
behavior. Recursive, "bottom up" specifications yield much more natural, fluid, and
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flexible behavior at the global level than typical "top down" specifications, and they
do so much more parsimoniously.

IMPORTANCE OF CONTEXT SENSITIVITY. It is worthwhile to note that context-
sensitive rules in GTYPE/PTYPE systems provide the possibility for nonlinear
interactions among the parts. Without context sensitivity, the systems would be
linearly decomposable, information could not "flow" throughout the system in any
meaningful manner, and complex long-range dependencies between remote parts of
the structures could not develop.

FEEDBACK BETWEEN THE LOCAL AND THE GLOBAL LEVELS. There is also a very
important feedback mechanism between levels in such systems: the interactions
among the low-level entities give rise to the global-level dynamics which, in turn, af-
fects the lower levels by setting the local context within which each entity's rules are
invoked. Thus, local behavior supports global dynamics, which shapes local context,
which affects local behavior, which supports global dynamics, and so forth.

6.5 GENUINE LIFE IN ARTIFICIAL SYSTEMS

It is important to distingiiiih the ontological status of the various levels of behavior
in such systems. At the level of the individual behavors, we have a clear differ-
ence in kind: Boids are not birds, they are not even remotely like birds, they have
no cohesive physical structure, but rather they exist as information structures-
processes-within a computer. But-and this is the critical "But"-at the level
of behaviors, flocking Boids and flocking birds are two instances of the same phe-
nomenon: flocking.

The behavior of a flock as a whole does not depend critically on the internal
details of the entities of which it is constituted, only on the details of the way
in which these entities behave in each other's presence. Thus, flocking in Boids is
true flocking, and may be counted as another empirical data point in the study
of flocking behavior in general, right up there with flocks of geese and flocks of
starlings.

This is not to say that flocking Boids capture all the nuances upon which
flocking behavior depends, or that the Boid's behavioral repertoire is sufficient to
exhibit all the different modes of flocking that have been observed-such as the
classic "V" formation of flocking geese. The crucial point is that we have captured,
within an aggregate of artificial entities, a bona fide lifelike behavior, and that the
behavior emerges within the artificial system in the same way that it emerges in
the natural system.

The same is true for L-systerns and the self-reproducing loops. The constituent
parts of the artificial systems are different kinds of things from their natural counter-
parts, but the emergent behaviors that they support are the same kinds of thing as
their natural counterparts: genuine morphogenesis and differentiation for L-systems,
and genuine self-reproduction in the case of the loops.
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The claim is the following. The "artificial" in Artificial Life refers to the com-
ponent parts, not the emergent processes. If the component parts are implemented
correctly, the processes they support are genuine-every bit as genuine as the nat-
ural processes they imitate.

The big claim is that a properly organized set of artificial primitives carrying
out the same functional roles as the biomolecules in natural living systems will
support a process that will be "alive" in the same way that natural organisms are
alive. Artificial Life will therefore be genuine life-it will simply be made of different
stuff than the life that has evolved here on Earth.

7. EVOLUTION
7.1 EVOLUTION: FROM ARTIFICIAL SELECTION TO NATURAL SELECTION

Modern organisms owe their structure to the complex process of biological evolu-
tion, and it is very difficult to discern which of their properties are due to chance
and which to necessity. If biologists could "rewind the tape" of evolution and start it
over, again and again, from different initial conditions, or under different regimes of
external perturbations along the way, they would have a full ensemble of evolution-
ary pathways to generalize over. Such an ensemble would allow them to distinguish
universal, necessary properties (those which were observed in all the pathways in
the ensemble) from accidental, chance properties (those which were unique to in-
dividual pathways). However, biologists cannot rewind the tape of evolution, and
are stuck with a single, actual evolutionary trace out of a vast, intuited ensemble
of possible traces.

Although studying computer models of evolution is not the same as studying
the "real thing," the ability to freely manipulate computer experiments-to "rewind
the tape," perturb the initial conditions, and so forth-can more than make up for
their "lack" of reality.

It has been known for some time that one can evolve computer programs by
the process of natural selection anrong a population of variant programs. Each
individual program in a population of programs is evaluated for its performance
on some task. The programs that perform best are allowed to "breed" with one
another via Genetic Algorithms."'12 The offspring of these better-performing parent
programs replace the worst-performing programs in the population, and the cycle is
iterated. Such evolutionary approaches to program improvement have been applied
primarily to the tasks of function optimization and machine learning.

However, such evolutionary models have rarely been used to study evolution
;tself.27 Researchers have primarily concentrated on the results, rather than on the
process, of evolution. In the spirit of von Neumann's research on self-reproduction
via the study of self-reproducing automata, the following sections review studies of
the process of evolution by studying evolving populations of "automata."
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7.2 ENGINEERING PTYPES FROM GTYPES

In the preceding sections, we have mentioned several times the formal impossibility
of predicting the behavior of an arbitrary machine by mere inspection of its spec-
ification and initial state. In the general case, we must run a machine in order to
determine its behavior.

The consequence of this unpredictability for GTYPE/PTYPE systems is that
we cannot determine the PTYPE that will be produced by an arbitrary GTYPE
by inspection alone. We must "run" the GTYPE in the context of a specific envi-
ronment, and let the PTYPE develop in order to determine the resulting structure
and its behavior.

This is even further complicated when the environment consists of a population
of PTYPES engaged in nonlinear interactions, in which case the determination of
a PTYPE depends on the behavior of the specific PTYPES it is interacting with.
and on the emergent details of the global dynamics.

Since, for any interesting system, there will exist an enormous number of po-
tential GTYPES, and since there is no formal method for deducing the PTYPES
from the GTYPES, how do we go about finding GTYPES that will generate lifelike
PTYPES? Or PTYPES that exhibit any other particular sought-after behavior?

Until now, the process has largely been one of guessing at appropriate
GTYPES, and modifying-them by trial and error until they generate the appropri-
ate PTYPES. However, this process is limited by our preconceptions of what the
appropriate PTYPES would be, and by our restricted notions of how to generate
GTYPES. We would like to be able to automate the process so that our pre-
conceptions and limited abilities to conceive of machinery do not overly constrain
the search for GTYPES that will yield the appropriate behaviors.

7.3 NATURAL SELECTION AMONG POPULATIONS OF VARIANTS

Nature, of course, has had to face the same problem, and has hit upon an elegant
solution: evolution by the process of natural selection among populations of variants.
The scheme is a very simple one. However, in the face of the formal impossibility
of predicting behavior from machifte description alone, it may well be the only
efficient, general scheme for searching the space of possible GTYPES.

The mechanism of evolution is as follows. A set of GTYPES is interpreted
within a specific environment, forming a population of PTYPES which interact
with one another and with features of the environment in various complex ways. On
the basis of the relative performance of their associated PTYPES, some GTYPES
are duplicated in larger numbers than others, and they are duplicated in such a way
that the copies are similar to-but not exactly the same as-the originals. These
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FIGURE 8 The process of evolution by natural selection. Original figure appeared
in "Artificial Life" by Christopher Langton, in Artificial Life, edited by C. Langton
(Addison-Wesley, Redwood City, 1989).

variant GTYPES develop into variant PTYPES, which enter into the complex
interactions within the environment, and the process is continued ad infinitum
(Figure 8). As expected from the formal limitations on predictability, GTYPES
must be "run" (i.e., turned into PTYPES) in an environment and their behaviors
must be evaluated explicitly, their implicit behavior cannot be determined.

7.4 GENETIC ALGORITHMS

In the spirit of von Neumann, John Holland has attempted to abstract "the logical
form" of the natural process of biological evolution in what he calls the "Genetic
Algorithm" (GA).12, 13 In the GA, a GTYPE is represented as a character string
that encodes a potential solution to a problem. For instance, the character string
might encode the weight matrix of a neural network, or the transition table of
a finite state machine. These character strings are rendered as PTYPES via a
problem-specific interpreter, which constructs, for example, the neural net or finite
state machine specified by each GTVPE, evaluates its performance in the problem
domain, and provides it with a specific fitness value, or -'strength."

The GA implements natural selection by making more copies of the character
strings representing the better performing PTYPES. The GA generates variant
GTYPES by applying genetic operators to these character strings. The genetic
operators typically consist of reproduction, crossover, and mutation, with occasional
usage of inversion and duplication.

Recently, John Koza"5 has developed a version of the GA, which he calls the Ge-
netic Programming Paradigm (GPP), that extends the genetic operators to work
on GTYPES that are simple expressions in a standard programming language.
The GPP differs from the traditional GA in that these program expressions are
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(a) 11001010111010110101000101011011101011

(b) (OR (NOT a) (AND b c) )

NOT AND

a b c

FIGURE 9 GTYPES in the GA and GPP paradigms.

not represented as simple character strings but rather as the parse trees of the
expressions. This makes it easier for the genetic operators to obey the syntax of the
programming language when producing variant GTYPES.

Figure 9 shows some examples of GTYPES in the GA and GPP paradigms.

THE GENETIC OPERATORS The genetic operators work as follows.
Reproduction is the most basic operator. It is often implemented in the form

of fitness proportionate reproduction, which means that strings are duplicated in
direct proportion to their relative fitness values. Once all strings have been eval-
uated, the average fitness of the population is computed, and those strings whose
fitness is higher than the populatiou average have a higher probability of being
duplicated, while those strings whose fitness is lower than the population average
have a lower probability of being duplicated. There are many variations on this
scheme, but most implementations of the GA or the GPP use some form of fitness
proportionate reproduction as the means to implement "selection." Another form
of this is to simply keep the top 10% or so of the population and throw away the
rest, using the survivors as breeding stock for the next generation.

Mutation in the GA is simply the replacement of c.ne or more characters in
a character string GTYPE with another character picked at random. In binary
strings, this simply amounts to random bit flips. In the GPP, mutation is imple-
mented by picking a sub-tree of the parse tree at random, and replacing it with a
randomly generated sub-tree whose root node is of the same syntactic type as the
root node of the replaced sub-tree.
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FIGURE 10 Crossover operation in the GA and GPP.

Crossover is an analog of sexual recombination. In the GA, this is accom-
plished by picking two "parent" character strings, lining them up side-by-side, and
interchanging equivalent sub-strings between them, producing two new sub-strings
that each contain a mix of their parent's genetic information. Crossover is an ex-
tremely important genetic operator. Whereas mutation is equivalent to random
search, crossover allows the more "intelligent" search strategy of putting things
that have proved useful in new combinations.

In the GPP, crossover is implemented by picking two "parent" parse trees,
locating syntactically similar sub-trees within each, and swapping them.

Figure 10 illustrates the crossover operation in the GA and GPP.
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Inversion is used rarely in order to rearrange the relative locations of specific
pieces of genetic information in the character strings of the GA.

Duplication is sometimes used in situations where it makes sense for the
genome to grow in length, representing, for instance, larger neural nets, or bigger
finite state machine transition tables.

THE OPERATION OF THE GENETIC ALGORITHM The basic outline of the genetic
algorithm is as follows:

1. Generate a random initial population of GTYPES.
2. Render the GTYPES in the population as PTYPES and evaluate them in the

problem domain, providing each GTYPE with a fitness value.
3. Duplicate GTYPES according to their relative fitness using a scheme like fitness

proportionate reproduction.
4. Apply genetic operators to the GTYPES in the population, typically picking

crossover partners as a function of their relative fitness.
5. Replace the least-fit GTYPES in the population with the offspring generated

in the last several steps.
6. Go back to step 2 and iterate.

Although quite simple .in outline, the genetic algorithm has proved remarkably
powerful in a wide variety of applications, and provides a useful tool for both the
study and the application of evolution.

THE CONTEXT OF ADAPTATION GA's have traditionally been employed in the con-
texts of machine learning and function optimization. In such contexts, one is often
looking for an explicit, optimal solution to a particular, well-specified problem. This
is reflected in the implementation of the evaluation of PTYPES in traditional GA's:
each GTYPE is expressed as a PTYPE independently of the others, tested on the
problem, and assigned a value representing its individual fitness using an explicit
fitness function. Thus, one is often seeking to evolve an individual that explicitly en-
codes an optimal solution to a precisely specified problem. The fitness of a GTYPE
in such cases is simply a function of the problem domain, and is independent of the
fitnesses of the other GTYPES in tht population.

This is quite different from the context in which natural biological evolution
has taken place, in which the behavior of a PTYPE and its associated fitness are
highly dependent on which other PTYPES exist in the environment, and on the
dynamics of their interactions. Furthermore, in the natural context, it is generally
the case that there is no single, explicitly specified problem confronting the pop-
ulation. Rather, there is often quite a large set of problems facing the population
at any one time, and these problems are only implicitly determined as a function
of the dynamics of the population and the environment themselves, which may
change significantly over time. In such a context, nature has often discovered that
the collective behavior emerging from the interactions among a set of PTYPES will
address a subset of the implicitly defined problems.
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Thus, the proper picture for the natural evolutionary context is that of a large
cloud of implicit collective solutions addressing a large cloud of implicit collective
problems. Both of these clouds are implicit in the spatio-temporal dynamics of the
population.

The dynamics of such systems are very complex and impossible to predict. One
can think of them as the dynamical equivalent of many-body orbital mechanics
problems: two-body problems can be treated analytically, whereas three- or more
body problems are nonanalytic.

The important point here is that nonlinearities and emergent collective phe-
nomena are properties that are to be exploited, rather than avoided as has been
the traditional engineering viewpoint. Emergent nonlinear solutions may be harder
to understand or to engineer, but there are far more of them than there are none-
mergent, analyzable linear solutions. The true power of evolution lies in its ability
to exploit emergent collective phenomena; it lies, in fact, in evolution's inability to
avoid such phenomena.

7.5 FROM ARTIFICIAL SELECTION TO NATURAL SELECTION

In The Origin of Species, Darwin used a very clever device to argue for the agency of
natural selection. In the ffrst chapter of Origin, Darwin lays the groundwork of the
case for natural selection by carefully documenting the process of artliicialselection.
Most people of his time were familiar with the manner in which breeders of domestic
animals and plants could enhance traits arbitrarily by selective breeding of their
stock. Darwin carefully made the case that the wide variety of domestic animals
and plants extant at his time were descended from a much smaller variety of wild-
stock, due to the selective breedings imposed by farmers and herders throughout
history.

Now, Darwin continues, simply note that environmental circumstances can fill
the role played by the human breeder in artificial selection, and voili! one has nat-
ural selection. The rest of the book consists in a very careful documentation of the
manner in which different environmental conditions would favor animals bearing
different traits, making it more likely that individuals bearing those traits would
survive to mate with each other and produce offspring, leading to the gradual en-
hancement of those traits through time. A beautifully simple yet elegant mechanism
to explain the origin and maintenance of t he diversity of species on Earth-too sim-
ple for many of his time, parcicularly those of strong religious persuasion.

The abstraction of this simple elegant mechanism for the production and fil-
tration of diversity in the form of the Genetic Algorithm is straightforward and
obvious. However, as it is usually implemented, it is artificial, rather than natural,
selection that is the agency determining the direction of computer evolution. Ei-
ther we ourselves, or our algorithmic agents in the form of explicit fitness functions,
typically stand in the role of the breeder in computer implementations of evolution.
Yet it is plain that the role of "breeder" can as easily be filled by "nature" in the
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world inside the computer as it is in the world outside the computer-it is just a
different "'nature."

In the following sections, we will explore a number of examples of computa-
tional implementations of the evolutionary process, starting with examples that
clearly involve artificial selection, and working our way through to an example that
clearly involves natural selection. The key thing to keep track of throughout these
examples is the manner in which we incrementally give over our role as breeder to
the "natural" pressures imposed bv the dynamics of the computational world itself.

A BREEDER'S PARADISE: BIOMORPHS The first model. a clear-cut example of com-
putational artificial selection, is due to the Oxford evolutionary biologist. Richard
Dawkins, author of such highly regarded books as The Selfish Gene, The Extended
Phenotype, and The Blind Watchmaker.

In order to illustrate the power of a process in which the random production
of variation is coupled with a selection mechanism, D)awkins wrote a program for
the Apple Macintosh computer that, allows users to "breed" recursively generated
objects.

The program is set up to generate tree structures recursively by starting with
a single stem, adding branches to it in a certain way, adding branches to those
branches in the same way,_and so on. The number of bran,:hes. their angles, their
size relative to the stem they are being added to. the number of branching iterations.
and other parameters affecting the growth of these trees are what constitute the
GTYPES of the tree organisms-or -hiomorphs" as Dawkins calls them. Thus,
the program consists of a general purpose recursive tree generator, which takes
an organism's GTYPE (parameter settings) as data and generates its associated
PTYPE (the resulting tree).

The program starts by producing a simple default -or "Adam" -- tree and then
produces a number of mutated copies of the parameter string for the Adam tree.
The program renders the PTYPE trees for all of these different mutants on the
screen for the user to view. The user then selects the P FYPE (i.e., tre, shape)
he or she likes the best, and the program produces mutated copics of tCat tree's
GTYPE, and renders the associated PTYPES. The user selects another tree. and
the process continues. The original Adlam tree together with a number of its distant
descendants are shown in Figure 11.

It is clear that this is a process of artificial selection. The computer generates the
variants, but the human user fills the role of the "breeder," t he active selective agent.
determining which structures are to go on to produce variant offspring. tIowe%'r,
the mechanics of the production of variants are particularly clear: produce slight
variations on the presently selected (,TYPE. 'FiTe specific action taken by the human
breeder is also very clear: choose the PTYPE whose GTYPE will have variations of
it produced in the next round. There is both a producer and a selector of variation.
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(a)

(b)

FIGURE 11 (a) Dawkin's original Adam tree, and (b) a number of its distant
descendants.6

ALGORITHMIC BREEDERS In this section, we investigate a model which will take
us two steps closer to natural selection. First, the human breeder is taken cut of
the loop, replaced by a program he writes, which formalizes his selection criteria.
so that the act of selection can be performed by his computational agent. Second,
we see that our computational representative can itself be allowed to evolve-an
important first step toward eliminating our externally imposed, a priorz criteria
from the process completely.

The system we discuss here is due to Danny Hillis, inventor of the Connection
Machine and chief scientist of Thinking Machines Corporation. In the course of the
work at TMC, they have a need to design fast and efficient chips for the hardware

implementation of a wide variety of common computational tasks, such as sorting
numbers. For many of these, there is no body of theory that tells engineers how to
construct the optimal circuit to perform the task in question. Therefore, progress
in the design of such circuits is often a matter of blind trial and error until a
better circuit is discovered. Hillis decided to apply the trial-and-error procedure of
evolution to the problem of designing sorting circuits.

In his system, the GTYPES are strings 9 f numbers encod'ng circuit connections
that implement comparisons and swaps between input lines. GTYPFS are rendered
into the specific circuits they encode-their PTYPES-and they are rated accord-
ing to the number of circuit elements and connections they require, )nd by their
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performance on a number of test strings which they have to sort. This rating is ac-
cornplished by an explicit fitness function-Hillis' computational representative-
which implements the selection criteria and takes care of the breeding task. Thus,
this is still a case of artificial selection, even though there is no human being actively
doing the selection.

Hillis implemented the evolution problem on his Connection Machine CM2-
a 64K processor SIMD parallel supercomputer. With populations of 64K sorting
networks over thousands of generations. the system managed to produce a 65-
element sorter, better than some cleverly engineered sorting networks, but not as
good as the best known such network, which has 60 components. After reaching
65-element sorters, the system consistently became stuck on local optima.

Hillis then borrowed a trick from the biological literature on the coevolution
of hosts and parasites (specifically Hamilton 9,") and in the process took a step
closer to natural selection by allowing the evaluation function to evolve in time.
In the previous runs, the sorting networks were evaluated on a fixed set of sorting
problems-random sequences of numbers that the networks had to sort into correct
order. In the new set of runs, Hillis made another evolving population out of the
sorting problems. The task for the sorting networks was to do a good job on the
sorting problems, while the task for the sorting problems was to make the sorting
networks perform poorly. ---

In this situation, whenever a good sorting network emerged and took over the
population, it became a target for the population of sorting problems. This led
to the rapid evolution of sorting sequences that would make the network perform
poorly and hence reduce its fitness. Hillis found that this coevolution between the
sorting networks and the sorting problems led much more rapidly to better solutions
than had been achieved by the evolution of sorting networks alone, resulting in a
sorting network consisting of 61 elements.

It is the coevolution in this latter set of runs that both bring us one step closer
to natural selection and is responsible for the enhanced efficiency of the search for
an optimal sorting network. First of all, rather than having an absolute. fixed value,
the fitness of a sorting network depends on the specific set of sorting problems it
is facing. Likewise, the fitness of a set of sorting problems depends on the specific
set of sorting networks it is facing. Thus, the "fitness" of an individual is now a
relative quantity, not an absolute one. The fitness function depends a little more
on the "nature" of the system, it is an evolving entity as well.

Coevolution increases the efficiency of the search as follows. In the earlier runs
consisting solely of an evolving population of sorting networks, the population of
networks was effectively hill climbing on a multi-peaked fitness landscape. There-
fore, the populations would encounter the classic problem of getting stuck on local
maxima. That is, a population could reach certain structures which lie on relatively
low fitness peaks, but from which any deviations result in lower fitness, which is
selected against. In order to find another, higher peak, the population would have
to cross a fitness valley, which it is difficult to do under simple Darwinian selection
(Figure 13(a)).
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FIGURE 12 An evolved sorting network showing sequencing of comparisons and
swaps. Original figure appeared in "Co-Evolving Parasites Improve Simulated Evolution
as an Optimization Procedure" by W. D. Hillis, in Artificial Life I, edited by C. G.
Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, (Redwood City, CA: Addison-
Wesley, 1991).11

In the coevolutionary case, here's what happens (Figure 13(b)). When a popu-
lation of sorting networks gets stuck on a local fitness peak, it becomes a target for
the population of sorting problems. That is, it defines a new peak for the sorting
problems to climb. As the sorting problems climb their peak, they drive down the
peak on which the sorting networks are sitting, by finding sequences that make the
sorting networks perform poorly, therefore lowering their fitness. After a while, the
fitness peak that the sorting networks were sitting on has been turned into a fitness
valley, from which the population can escape by climbing up the neighboring peaks.
As the sorting networks climb other peaks, they drive down the peak that they had
provided for the sorting problems, which will then chase the sorting networks to
the new peaks they have achieved and drive those down in turn.

In short, each population dynamically deforms the fitness landscape being tra-
versed by the other population in such a way that both populations can continue to
climb uphill without getting stuck on local maxima. When they do get stuck, the
maxima get turned into minima which can be climbed out of by simple Darwinian
means. Thus, coupled populations evolving by Darwinian means can bootstrap each
other up the evolutionary ladder far more efficiently than they can climb it alone. By
competing with one another, coupled populations improve one another at increased
rates.

i i i i
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(a)

(b)

FIGURE 13 (a) Population of sorting networks stuck on a local fitness peak. In order
to attain the higher peak, the population must cross a fitness "valley," which is difficult
to achieve under normal Darwinian mechanisms. (b) The coevolving parasites deform
the fitness landscape of the sorting networks, turning the fitness peak into a fitness
valley, from which it is easy for the population to escape.

TABLE 1 The payoff matrix for the Prisoner's Dilemma
Game. The pair (sj, s 2 ) denotes the scores to play-
ers A and B, respectively.

Player B
Cooperate Defect

Cooperate (3,3) (0,5)
Player A

Defect (5,0) (1,1)
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Thus, when coupled in this way, a population may get hung up on local optima
for a while, but eventually it will be able to climb again. This suggests immediately
that the structure of the evolutionary record for such systems should show periods
of stasis followed by periods of evolutionary change. The stasis comes about as
populations sit at the top of local fitness peaks, waiting around for something to
come along and do them the favor of lowering the peaks they are stuck on. The
periods of change come about when populations are released from local optima and
are freed to resume climbing up hills, and are therefore changing in time. Hillis has.
in fact. carefully documented this kind of Punctuated Equilibria in his system.

COMPUTATIONAL ECOLOGIES Continuing on our path from artificial to natural
selection, we turn to a research project carried out by Kristian Lindgren,18 in which.
although there is still an explicit fitness measure, many different species of organisms
coevolve in each other's presence, forming ecological webs allowing for more complex
interactions than the simple host-parasite interactions described above.

In this paper, Lindgren studies evolutionary dynamics within the context of a
well-known game-theoretic problem: the Iterated Prisoner's Dilemma model (IPD).
This model has been used effectively by Axelrod and Hamilton in their studies of
the evolution of cooperation."12

In the prisoner's diftmma model, the payoff matrix (the fitness function) is
constructed in such a way that individuals will garner the most payoff collectively
in the long run if they "cooperate" with one another by avoiding the behaviors that
would garner them the most payoff individually in the short run. If individuals only
play the game once, they will do best 6 y not cooperating ("defecting"). However.
if they play the game repeatedly with one another (the "'iterated" version of the
game), they will do best by cooperating with one another.

The payoff matrix for the prisoner's dilemma game is shown in Table 1. This
payoff matrix has the following interesting property. Assume, as is often assumed
in game theory, that each player wants to maximize his immediate payoff, and let's
analyze what player A should do. If B cooperates, then A should defect, because
then A will get a score of 5 whereas he only gets a score of 3 if he cooperates. On
the other hand, if B defects, then again, A should defect, as he will get a score of
1 if he defects while he only gets a score of 0 if he cooperates. So, no matter what
B does, A maximizes his immediate payoff by defecting. Since the payoff matrix is
symmetric, the same reasoning applies to player B, so B should defect no matter
what A does. Under this reasoning, each player will defect at each time step, giving
them I point each per play. However, if they could somehow decide to cooperate.
they would each get 3 points per play: the two players will do better in the long
run by foregoing the action that maximizes their immediate payoff.

The question is, of course, can ordinary Darwinian mechanisms, which assume
that individuals selfishly want to maximize their immediate payoff, lead to coop-
eration? Surprisingly, as demonstrated by Axelrod and Hamilton, the answer is
yes.
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strategy name

[0 0] All Defect

[ 0 1] TIT-for-TAT (TFT)

[1 0] TAT-for-TIT (anti-TFT)

[ 1I All Cooperate
FIGURE 14 Four possible memory 1 strategies.

In Lindgren's version of this game, strategies can evolve in an open-ended fash-
ion by learning to base their decisions on whether to cooperate or defect upon longer
and longer histories of preyious interactions.

The scheme used by Lindgren to represent strategies to play the Iterated Pris-
oner's Dilemma game is as follows. In the simplest version of the game., players make
their choice of whether to cooperate or defect based solely on what their opponent
did to them in the last time step. This is called the memory 1 game. Since the
opponent could have done only one of two things, cooperate or defect, a strategy
needs to specify what it would do in either of those two cases. As it has two moves
it can make in either of those two cases, cooperate or defect, there are four possible
memory 1 strategies. These can be encoded in bit strings of length 2, as illustrated
in Figure 14.

If the players should base their decisions by looking another move into the
past, to see what they did to their opponent before their opponent made his move,
then we would have the memory 2 game. In this case, there are two moves with two
possible outcomes each, meaning that-a memory 2 strategy must specify whether to
cooperate or defect for each of four possible cases. Such a strategy can be encoded
using four bits, twice the length of the memory 1 strategies, so there will be 16
possible memory 2 strategies. Memory 3 strategies require another doubling of the
encoding bit string, i.e., 8 bits, yielding 256 possible strategies. In general, memory
n strategies require 2' bits for their encoding, and there will be 2(2' 1 such strategies.

In order to allow for the evolution of higher memory strategies, Lindgren in-
troduces a new genetic operator: gene duplication. As a memory n strategy is just
twice as long as a memory n - 1 strategy, a memory n strategy can be produced
from a memory n - 1 strategy by simply duplicating the memory n strategy and
concatenating the duplicate to itself. In Lindgren's encoding strategy, gene dupli-
cation has the interesting property that it is a neutral mutation. Simple duplication
alone does not change the PTYPE, even though it has doubled the length of the
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GTYPE. However, once doubled, mutations in the longer GTYPE will alter the
behavior of the PTYPE.

Once again, evolution proceeds by allowing populations of different organisms
to bootstrap each other up coupled fitness landscapes, dynamically deforming each
other's landscapes by turning local maxima into local minima. Again, the fitness
of strategies is not an absolute fixed number that is independently computable.
Rather, the fitness of each strategy depends on what other strategies exist in the
"natural" population.

Many complicated and interesting strategies evolve during the evolutionary
development of this system. More important, however, are the various phen, . no-
logical features exhibited by the dynamics of the evolutionary process. First of all,
as we might expect, the system exhibits a behavior that is remarkably suggestive of
Punctuated Equilibria. After an initial irregular transient, the system settles down
to relatively long periods of stasis "punctuated" irregularly by period rapid
evolutionary change (Figure 15).

Second, the diversity of strategies builds up during the long periods of stasis,
but often collapses drastically during the short, chaotic episodes of rapid evolution-
ary succession (Figure 16). These "crashes" in the diversity of species constitute
"extinction events." In this model, these extinction events are observed to be a
natural consequence ofi.the dynamics of the evolutionary process alone, without
invoking any catastrophic, external perturbations (there are no comet impacts or
"nemesis" stars in this model!). Furthermore, these extinction events happen on
multiple scales: there are lots of little ones and fewer large ones.

1001 0001 1001 1001000100010001

01

10010001

1=0 t=30000

FIGURE 15 During evolutionary development, the system settles down to relatively
long periods of stasis "punctuated" irregularly by periods of rapid evolutionary change.
Original figure appeared in "Evolutionary Phenomena in Simple Dynamics " by K.
Lindgren, in Artificial Life I, edited by C. G. Langton, C. Taylor, J. D. Farmer, and
S. Rasmussen, (Redwood City, CA: Addison-Wesley, 1991)13
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FIGURE 16 See caption on next page.
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FIGURE 16 (cont'd.) The evolutionary dynamics of strategies in the iterated
prisoner's dilemmp system nf I indnren In both cases, the top trace plots the changing
concentration of strategies in the population while the bottom trace shows two things:
the solid line plots the average fitness of the population, while the dotted line plots
the diversity of species (the number of different strategies in the population at any
time.) In all cases, time is traced on the horizontal axis. The top traces illustrate the
interplay between metastable and chaotic episodes, while the bottom traces illustrate
the "extinction events" that are often associated with the end of metastable periods.
These extinction events can be quite large, as is seen in the bottom trace.

This is important because in order to understand the dynamics of a system
that is subjected to constant perturbations, one needs to understand the dynamics
of the unperturbed system first. We do not have access to an unperturbed version
of the evolution of life on Earth; consequently, we could not have said definitively
that extinction events on many size scales would be a natural consequence of the
process of evolution itself. By comparing the perturbed and unperturbed versions
of model systems like Lindgren's, we may very well be able to derive a universal
scaling relationship for "natural" extinction events, and therefore be able to explain
deviations from this relatjinship in the fossil record as due to external perturbations
such as the impact of large asteroids.

Third, the emergence of ecologies is nicely demonstrated by Lindgren's model.
It is usually the case that a mix of several different strategies dominates the system
during the long periods of stasis. In order for a strategy to do well, it must do well by
cooperating with other strategies. These mixes may involve three or more strategies
whose collective activity produces a stable interaction pattern that benefits all of
the strategies in the mix. Together, they constitute a more complex, "higher order"
strategy, which can behave as a group in ways that are impossible for any individual
strategy.

it is important to note that, in many cases, the "environment" that acts on an
organism, and in the context of which an organism acts, is primarily constituted
of the other organisms in the population and their interactions with each other
and the physical environment. There is tremendous opportunity here for evolution
to discover that certain sets of individuals exhibit emergent, collective behaviors
that reap benefits to all of the individuals in the set. Thus, evolution can produce
major leaps in biological complexity, without having to produce more complex
individuals by simply discovering, perhaps even "tripping over," the many ways in
which collections of individuals at one level can work together to form aggregate
individuals at the next higher level of organization. 4

This is thought to be the case for the origin of eukaryotic cells, which are viewed
as descended from early cooperative collections of simpler, prokaryotic cells.19 It
is also the process involved in the origin of multicellular organisms, which lead to
the Cambrian explosion of diversity some 700 million years ago. It was probably
a significant factor in the origin of the prokaryotes themselves, and it has been
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discovered independently at least seven times by the various social insects (including
species of wasps, bees. ants, and termites).

The final seep in eliminating our hand from the selection/breeding process and
setting the stage for true "natural" selection within a computer is taken in a model
due to Tom Ray.21 This step involves eliminating our algorithmic breeding agent
completely.

In his "Tierra" simulation system, computer programs compete for CPU time
and memory space. The ,task" that these programs must perform in order to be
reproduced is simply the act of self-reproduction itself! Thus, there is no need for
an externally defined fitness function that determines which GTYPES get copied
by an external copying procedure. The programs reproduce themselves, and the
ones that are better at this task take over the population. The whole external task
of evaluation of fitness has been internalized in the function of the organisms them-
selves. Thus, there is no longer a place for the human breeder or his computational
agent. This results in genuine natural selection within a computer.

In Tierra, programs replicate themselves "noisily," so that some of their off-
spring behave differently. Variant programs that reproduce themselves more effi-
ciently, which trick other programs into reproducing them, or which capture the
execution pointers of other programs, etc., will leave more offspring than others.
Similarly, programs that learn to defend themselves against such tricks will leave
more offspring than those that do not.

We will discuss a few of the "digital organisms" that have emerged within the
Tierra system (it is not necessary to understand the code in the illustrateL. programs
in order to follow the explanation in the text.)[9J

Figure 17(a) shows the self-replicating "ancestor" program that is the only
program Tom Ray has ever written in the Tierra system. All the other programs
evolved under the action of natural selection.

The ancestor program works as follows. In the top block of code, the program
locates its "head" and its "tail," templates marking the upper and lower boundaries
of the program in memory. It saves these locations in special registers and, after
subtracting the location of the head from the location of the tail, it stores its length
in another register.

In the second block of code, the piogram enters an endless loop in which it will
repeatedly produce copies of itself. It allocates memory space of the appropriate
size and then invokes the final block of code, which is the actual reproduction loop.
After it returns from the reproduction loop, it creates a new execution pointer to
its newly produced offspring, and cycles back to create another offspring.

In the third and final block of code, the reproduction loop, the program copies
itself, instruction by instruction, into the newly allocated memory space, making
use of the addresses and length stored away by the first block of code. When it has
copied itself completely, it returns to the block of code that called it, in this case,
the second block.

[9lThe details are to be found in Ray.21
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It should be noted that "'function calls" in Tierra are accomplished by seek-
ing for a spccific bit pattern in memory rather than by branching to a specific
address. Thus, when the second block of code "calls" the third block of code, the
reproduction loop, it does so by initiating a seek forward in memory for a spe-
cific "template." When this template is found, execution begins at the instruction
following the template. Returns from function calls are handled in the normal man-
ner, by simply returning to the instruction following the initial functir. , call. This
template addressing scheme is used in other reference contexts as well, and helps
make Tierra language programs robust to mutations, as well as easily relocatable
in memory.

Figure 17(b) shows a "parasite" program that has evolved to exploit the an-
cestor program. The parasite is very much like the ancestor program, except that
it is missing the third block of code, the reproduction loop. How then does it copy
itself?

The answer is that it makes use of a nearby ancestor program's reproduction
loop! Recall that a function call in Tierra initiates a seek forward .nory for
a particular template of bits. If this pattern is not found within tile initiating
program's own code, the search may proceed forward in memory into the code
of other organisms, where the template may be found and where execution then
begins. When the invoked'function in another organism's code executes the "return"
statement, execution reverts to the program that initiated the function call. Thus,
organisms can execute each other's code, and this is exactly what ,iie parasite
program does: it makes use of the reproductive machinery of the ancestor host.

This means that the parasite does not have to take the time to copy the code
constituting the reproductive loop, and hence can reproduce more rapidly, as it
has fewer instructions to copy. The parasites thus proliferate in the population.
However, they cannot proliferate to the point of driving out the ancestor hosts
altogether, for they depend on them for their reproductive machinery. Thus, a
balance is eventually struck optimizing the joint system.

Eventually, however, another mutant form of the ancestor emerges which has
developed an immunity to the parasites. This program is illustrated in Figure 17(c).
Two key differences from the ancestor program confer the immunity to the parasite
programs. First, instead of executing a "return" instruction, the reproduction loop
instead initiates a jump back in memory to the template found in the instruction
that calls the reproduction loop. This has the same effect as a return statement
when executed by the immune program, but has a very different effect on the
parasite. The second important difference is that following the cell division in the
second block (which allocates a new execution pointer to the offspring just created),
the program jumps back to the beginning of the first block of code, rather than to
the beginning of the second block. Thus, the immune program constantly resets its
head, tail, and size registers. This seems useless when considering only the immune
organism's own reproduction, but let's see what happens when a parasite tries to
execute the reproduction loop in an immune organism.

When a parasite attempts to use the immune program's reproduction code,
the new jump transfers the parasite's execution pointer to the second block of the
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immune program's code, rather than returning it to the second block of the parasite
code, as the parasite expects. Then, this execution pointer is further re-directed to
the first block of the immune program, where the registers originally containing the
head, tail, and length of the parasite are reset to contain the head, tail, and length
of the immune organism. The immune program has thus completely captured the
execution pointer of the parasite. Having lost its execution pointer, the parasite
simply becomes dormant data occupying memory, while the immune program now
has two execution pointers running through it: its own original pointer, plus the
pointer it captured from the parasite. Thus, the immune program now reproduces
twice as rapidly as before. Once they emerge, such immune programs rapidly drive
the parasites to extinction.

Complex interactions between variant programs likc those described above con-
tinue to develop within evolutionary runs in Tierra. From a uniform population of
self-reproducing ancestor programs, Ray, a tropical biologist by training, notes the
emergence of whole "ecologies" of interacting species of computer programs. Fur-
thermore, he is able to identify many phenomena familiar to him from his studies
of real ecological communities, such as competitive exclusion, the emergence of par-
asites, key-stone predators and parasites, hyper-parasites, symbiotic relationships,
sociality, "cheaters," and so forth.

(a) ANECSTOR (b) PARAsITE (c) HYPER-PARASITE

IIII I111 I1ll

self-exam self-exam elfexam
rind 00,0 ,ro stert 0000 sort fbind 000'0 (tart

rind 0 o0 (end - find 0001 ed ") e x I find 00011 (endl o
calculte size ) cxcalculate size calculate size c )

reproductlon loop -• S reproduction loop'-"-N reproduction loop
allocate daughter -) ex allocate daughter ) ax allocate daughter -1 ex

call 001o (copy procedural ..... ca1l 0011 1 copy procedure I call 0011 I copy procedure -
/ cel division c cell division c cell division

jump oo0 o 010 jump 0010 jumpb 0000
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1100 ( ......... .1....... > 1100
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increment ax i bx jumpb 0101
jump 0101 1110

1011

restore registers
-- return ..... ..-...".
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FIGURE 17 Digital organisms from Ray's 2 ' tierra simulation system. (a) Self-
reproducing ancestor. (b) An early parasite of the ancestor. (c) A decendant of the
ancestor that is immune to the parasite.
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Again, the actual "fitness" of an organism is a complex function of its inter-
actions with other organisms in the "soup." Collections of programs can cooperate
to enhance each other's reproductive success, or they can drive each other's repro-
ductive success down, thus lowering fitness and kicking the population off of local
fitness peaks.

Not surprisingly, Ray, too, has noted periods of relative stasis punctuated by
periods of rapid evolutionary change, as complex ecological webs collapse and new
ones stabilize in their place. Systems like Ray's Tierra capture ..roper context
for evolutionary dynamics, and natural selection is truly at pla: .,:re.

8. CONCLUSION
This article is intended to provide a broad overview of the field of Artificial Life. its
motivations, history, theory, and practice. In such a short space, it cannot hope to
go into depth in any one of these areas. Rather, it attempts to convey the "spirit"
of the Artificial Life enterprise via scveral illustrative examples coupled with a good
deal of motivating explanation and discussion.

The field of ArtificialLife is in its infancy, and is currently engaged in a period
of extremely rapid growth, which is producing many new converts to the principles
detail, re. However, it is also raising a significant amount of con; -oversy, and is
no.: ,ut its critics. The notion of studying biology via the study of patently non-
bio 6ical things is an idea that is hard for the traditional biological copmmunity to
accept. The acceptance of Artificial Life techniques within the biological community
will be directly proportional to the contributions it makes to our understanding of
biological phenomena.

That these contributions are forthcoming, I have no doubt. However, high-
quality research in Artificial Life is difficult, because it requires that its practitioners
be experts in both the computational sciences and the biological sciences. Either of
these alone is a full-time career, and so the danger lurks of doing either masterful
biology but trivial computing, or dging masterful computing but trivial biology.

Therefore, I strongly suggest incorporating a trick from nature: cooperate! As
is amply illustrated in many of the examples discussed in this article, nature of-
ten discovers that collections of individuals easily solve problems that would be
extremely difficult or even impossible for individuals to solve on their own. Collab-
orations between biologists and computer scientists are quite likely to be the most
appropriate vehicles for making significant contributions to our understanding of
biology via the pursuit of Artificial Life.

So, if you are a computer expert dying to hack together an evolution program.
go find yourself a top-notch evolutionary biologist to collaborate with, one who will
bring to the enterprise an in-depth understanding of the subtleties of the evolution-
ary process plus a proper set of open questions about evolution towards which your
evolution program might be addressed.
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On the other hand, if you are a field biologist interested in doing some numer-
ical simulations in order to understand the ecological dynamics you are observing
in the field, hook up with a top-notch parallel-computing expert, who will bring
to the enterprise a thorough knowledge of the subtleties involved in multi-agent
interactions, and will be in possession of an equally open set of questions, which
you very well might find to be strikingly related to your own.

Above all, when in doubt, turn to Mother Nature. After all, she is smarter than
you!

ACKNOWLEDGMENTS
A large number of people have assisted in writing this paper, which is based on
my lecture notes for the Complex Systems Summer School and on the overview of
Artificial Life that served as an introduction to the proceedings of the first Artificial
Life workshop. Besides the people credited in the latter paper, I would like to thank
the following people for their help with this version: Tom Ray, Kristian Lindgren,
Danny Hillis, and John Koza. I would also like to thank Ronda Butler-Villa and
Della Ulibarri for their pa-i-nce with me and for their skill in preparing the figures
and text for publication.

REFERENCES

1. Axelrod, R., and W. D. Hamilton. "The Evolution of Cooperation." Science
211 (1981): 1390-1396.

2. Axelrod, R. The Evolution of Cooperation. New York, Basic Books, 1984.
3. Burks, A. W., ed. Essays on Cellular Automata. Urbana, IL: University of

Illinois Press, 1970.
4. Buss, L. 'The Evolution of Individuality." Princeton University Press, 1987.
5. Chapuis, A., and E. Droz. Automata: A Historical and Technological Study.

Translation by A. Reid. London: B. T. Batsford Ltd, 1958.
6. Dawkins, R. "The Evolution of Evolvability." In Artificial Life, edited by C.

G. Langton, 201-220. Santa Fe Institute Studies in the Sciences of Complex-
ity, Proc. Vol. VI. Redwood City, CA: Addison-Wesley, 1988.

7. Frisch, U., B. Hasslacher, and Y. Pomeau. "Lattice Gas Automata for the
Navier-Stokes Equation." Phys. Rev. Lett. 56 (1986): 1505-1508.

8. Goldberg, D. E. Genetic Algorithms in Search, Optimization, and Machine
Learning. Reading, MA: Addison-Wesley, 1989.

9. Hamilton, W. D. "Sex Versus Non-Sex Versus Parasite." OIKOS 35 (1980):
282-290.



240 Christopher G. Langton

10. Hamilton, W. D. "Pathogens as Causes of Genetic Diversity in their Host
Populations." In Population Biology of Infectious Diseases, edited by R. M.
Anderson and R. M. May, 269-296. Berlin: ';p-:- --Verlag, 1982.

11. Hillis, W. D. "Co-Evolving Parasites Improve Simulated Evolution as an Op-
timization Procedure." In Artificial Life II, edited by C. G. Langton, C. Tay-
lor, J. D. Farmer, and S. Rasmussen. 313-324. Santa Fe Institute Studies
in the Sciences of Complexity, Proc. Vol. X. Redwood City, CA: Addison-
Wesley, 1991.

12. Holland, J. H. Adaptation in Natural and Artificial Systems. Ann Arbor: Uni-
versity of Michigan Press, 1975.

13. Holland, J. H. "Escaping Brittleness: The Possibilities of General Purpose
Learning Algorithms Applied to Parailel Rule-Based Systems." In Machine
Learning II, edited by R. S. Mishalski, J. G. Carbonell, and T. M. Mitchell,
593-623. New York: Kaufman, 1986.

14. Hopcroft, J. E., and J. D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Menlo Park, CA: Addison-Wesley, 1979.

15. Koza, J. R. "Genetic Evolution and Co-Evolution of Computer Programs."
In Artificial Life II, edited by C. G. Langton, C. Taylor, J. D. Farmer, and S.
Rasmussen, 603-630. Santa Fe Institute Studies in the Sciences of Complex-
ity, Proc. Vol. X. Redwood City, CA: Addison-Wesley, 1991.

16. Langton, C. G. "Self-Reproduction in Cellular Automata." Physica D 10(1-
2) (1984): 135-144.

17. Langton, C. G. "Studying Artificial Life with Cellular Automata." Physica D
22 (1986): 120-149.

18. Lindgren, K. "Evolutionary Phenomena in Simple Dynamics." In Artificial
Life II, edited by C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen,
295-312. Santa Fe Institute Studies in the Sciences of Complexity, Proc. Vol.
X. Redwood City, CA: Addison-Wesley, 1991.

19. Margolus, L. Origin of Eucaryotic Cells. New Haven, Yale University Press,
1970.

20. Prusinkiewicz, P. The Algorithmic Beauty of Plants. Berlin: Springer-Verlag,
1991.

21. Ray, T. S. --An Approach to the Synthesis of Life." In Artificial Life II, edited
by C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, 371-408.
Santa Fe Institute Studies in the Sciences of Complexity, Proc. Vol. X. Red-
wood City, CA: Addison-Wesley, 1991.

22. Reynolds, C. W. "Flocks, Herds, and Schools: A Distributed Behavioral
Model." Proceedings of SIGGRAPH '87. Computer Graphics V 21(4) (1987):
25-34.

23. Toffoli, T. "Cellular Automata as an Alternative to (Rather than an Approx-
imation of) Differential Equations in Modeling Physics." In Cellular Au-
tomata: Proceedings of an Interdisciplinary Workshop (Los Alamos, New
Mexico, March 7-11, 1983), edited by J. D. Farmer, T. Toffoli, and S. Wol-
fram. Physica D (special issue) 10(1-2) (1984).



Artificial Life 241

24. Toffoli, T., and N. Margolus. Cellular Automata Machines. Cambridge: MIT
Press, 1987.

25. Ulam, S. -'On Some Mathematical Problems Connected with Patterns of
Growth of Figures." Proceedings of Symposia in Applied Mathematics 14.
1962, 215-224. Reprinted in Essays on Cellular Automata, edited by A. W.
Burks. Urbana, IL: University of Illinois Press, 1970.

26. Von Neumann, J. Theory of Self-Reproduczng Automata, edited and com-
pleted by A. W. Burks. Urbana: University of Illinois Press, 1966.

27. Wilson, S. W. "The Genetic Algorithm and Simulated Evolution." In Artifi-
cial Life, edited by C. G. Langton, 157-165. Santa Fe Institute Studies in the
Sciences of Complexity, Proc. Vol. VI. Redwood City, CA: Addison-Wesley.
1989.

28. Wolfram, S. "Cellular Automaton Fluids 1: Basic Theory." J. Stat. Phys. 45
(1986): 471-526.



James P. Sethna
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-
2501

Order Parameters, Broken Symmetry, and
Topology

As a kid in elementary school, I was taught that there were three states of
matter: solid, liquid, and gas. The ancients thought that there were four-
earth, water, air, and fire-which is considered sheer superstition. In junior
high, I remember reading a book called The Seven States of Matter. At least
one was "plasma," which made up stars and thus most of the universeP1]
and which sounded rather like fire to me.

The original three, by now, have become multitudes. In important and
precise ways, magnets are a distinct form of matter. Metals are different
from insulators. Superconductors and superfluids are striking new states of
matter. The liquid crystal in your wristwatch is one of a huge family of

different liquid crystalline states of matter 2 (nematic, cholesteric, blue
phase 1, 11, and blue fog, smectic A, B, C, C*, D, I,...). There are over 200
qualitatively different types of crystals, not to mention the quasi-crystals
(Figure 1). There are disordered states of matter, like spin glasses, and
states like the fractional quantum-hall effect with excitations of charge e/3

[1]They hadn't heard of dark matter back then.

1991 Lectures in Complex Systems, SFI Studies in the Sciences of Complexity,
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(like quarks). Particle physicists tell us that the vacuum we live within has,
in the past, been in quite different states: in the last vacuum but one, there
were four different kinds of light' (mediated by what is now the photon,
the W+, the W-, and the Z particle). We'll discuss this more in the next
paper.

4

When there were only three states of matter, we could learn about each
one and then turn back to learning long division. Now that there are mul-
titudes, though, we've had to develop a system. Our system is constantly
being extended and modified, because we keep finding new phases which
don't fit into the old frameworks. It's amazing how the 500th new state of
matter somehow screws up a system which worked fine for the first 499.
Quasi-crystals, the fractional quantum-hall effect, and spin glasses all re-
ally stretched our minds until (1) we understood why they behaved the way
they did, ariv (2) we understood how they fit into the general framework.

In this paper, I'm going to tell you the system. In the subsequent sections,
I'll discuss some gaps in the system: materials and types of behavior which
don't fit into the neat framework presented here. I'll try to maximize the
number of pictures and minimize the number of formulas, but there are
problems and ideas that I don't understand well enough to explain simply.
Most of what I tell you in this paper is both true and important. Much
of what is contained in the following sections represents my own pet ideas
and theories, and you should be warned not to take my messages there as
gospel.

The system consists of four basic steps.3 First, you must identify the broken
symmetry. Second, you must define an order parameter. Third, you are told
to examine the elementary excitations. Fourth, you classify the topological
defects. Most of what I say I take from Mermin?, Coleman,' and deGennes,2

and I heartily recommend these excellent articles to my audience. We take
each step in turn.

I. IDENTIFY THE BROKEN SYMMETRY

What is it which distinguishes the hundreds of different states of matter? Why do
we say that water and olive oil are in the same state (the liquid phase), while we say
aluminum and (magnetized) iron are in different states? Through long experience,
we've discovered that most phases differ in their symmetry.3 2!

[2]This is not to say that different phases always differ by symmetries! Liquids and gases have

the same symmetry. In fact, one can go continuously from a liquid to a gas, by going first to
high pressures and then heating. It is safe to say, though, that if the two materials have different
symmetries, they are different phases.
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FIGURE 1 Quasi-crystals. Much of these two chapters will discuss the properties
of crystals. Crystals are surely the oldest known of the broken-symmetry phases of
matter, and remain the most beautiful illustratiohs. It's amazing that in the past few
years, we've uncovered an entirely new class of crystals. Shown here is a photograph
of a quasi-crystalline metallic alloy, with icosahedral symmetry. Notice the five-
pointed stars: our old notions of crystals had to be completely revised to include this
type of symmetry. Photograph courtesy of Marc Audier, Ecole Nationale Superieure
d'Electrochimie et d'Electrametallargie de Grenoble.
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A B
FIGURE 2 Which is more symmetric? The cube has many symmetries. It can be
rotated by 900, 1800, or 2700 about any of the three axes passing through the faces.
It can be rotated by 1200 or 2400 about the corners and by 1800 about an axis passing
from the center through any of the 12 edges. The sphere, though, can be rotated by
any angle. The sphere respects rotational invariance: all directions are equal. The cube
is an object which breaks rotational symmetry: once the cube is there, some directions
are more equal than others.

Consider Figure 2, showing a cube and a sphere. Which is more symmetric?
Clearly, the sphere has many more symmetries than the cube. One can rotate the
cube by 900 in various directions and not change its appearance, but one can rotate
the sphere by any angle and keep it unchanged.

In Figure 3, we see a two-dimensional schematic representation of ice and water.
Which state is more symmetric here? Naively, the ice looks much more symmetric:
regular arrangements of atoms forming a lattice structure. The water looks irregu-
lar and disorganized. On the other hand, if one rotated Figure 3(b) by an arbitrary
angle, it would still look like water! Ice has broken rotational symmetry: one can
rotate Figure 3(a) only by multiples of 600. It also has a broken translational sym-
metry: it's easy to tell if the picture is shifted sideways, unless one shifts by a whole
number of lattice units. While the snapshot of the water shown in the figure has no
symmetries, water as a phase has complete rotational and translational symmetry.

One of the standard tricks to see if two materials differ by a symmetry is to
try to change one into the other smoothly. Oil and water won't mix, but I think oil
and alcohol do, and alcohol and water certainly do. By slowly adding more alcohol
to oil, and then more water to the alcohol, one can smoothly interpolate between
the two phases. If they had different symmetries, there must be a first point when
mixing them when the symmetry changes, and it is usually easy to tell when that
phase transition happens.
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II. DEFINE THE ORDER PARAMETER
Particle physics and condensed-matter physics have quite different philosophies.
Particle physicists are constantly looking for the building blocks. Once pions and
protons were discovered to be made of quarks, they became demoted into engi-
neering problems. Now that quarks and electrons and photons are made of strings,
and strings are hard to study (at least experimentally), there is great anguish in
the high-energy community. Condensed-matter physicists. on the other hand, try
to understand why messy combinations of zillions of electrons and nuclei do such
interesting simple things. To them, the fundamental question is not discovering the
underlying quantum mechanical laws. but in understanding and explaining the new
laws that emerge when many particles interact.

o 0

A B 0  0 0 0

WATER
0

0

0 0
0

0 O 0 0

0 0
0

FIGURE 3 Which is more symmetric? At first glance, water seems to have much less
symmetry than ice. The picture of 'two-dimensional" ice clearly breaks the rotational
invariance: it can be rotated only by 12O* or 240'. It also breaks the translational
invariance: the crystal can only be shifted by certain special distances (whole number
of lattice units). The picture of water has no symmetry at all: the atoms are jumbled
together with no long-range pattern at all. Water, though, isn't a snapshot: it would be
better to think of it as a combination of all possible snapshots! Water has a complete
rotational and translational symmetry: the pictures will look the same if the container is
tipped or shoved.
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FIGURE 4 Magnet. We take the magnetization M as the order parameter for a
magnet. Fnr a given material at a given temperature, the amount of magnetization
IMI = M0 will be pretty well fixed, but the energy is often pretty much independent
of the direction Mý = MilMo of the magnetization. (You can think of this as a arrow
pointing to the north end of each atomic magnet.) Often, the magnetization changes
directions smoothly in different parts of the material. (That's why not all pieces of iron
are magnetic!) We describe the current state of the material by an order parameter
field fti(x). The order parameter field is usually thought of as an arrow at each point
in space. It can also be thought of as a function taking points in space x into points on
the sphere IM( = M0 . This sphere S 2 is the order parameter space for the magnet.

As one might guess, we don't keep track of all the electrons and protons.(1] We're
always looking for the important variables, the important degrees of freedom. In
a crystal, the important variables are the motions of the atoms away from their
lattice positions. In a magnet, the important variable is the local direction of the
magnetization (an arrow pointing to the "north" end of the local magnet). The local
magnetization comes from complicated interactions between the electrons, and is
partly due to the little magnets attached to each electron and partly due to the
way the electrons dance around in the material: these details are for many purposes
unimportant.

[31The particle physicists use order parameter fields, too. Their order parameter fields also hide
lots of details about what their quarks and gluons are composed of. The main difference is that
they don't know of what their fields are composed. It ought to be reassuring to them that we
don't always find our greater knowledge very helpful.
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The important variables are combined into an "order parameter field."141 In Fig-
ure 4, we see the order parameter field for a magnet.[51 At each position x = (z, y, z),

we have a direction for the local magnetization fi(x). The length of M is pretty
much fixed by the material, but the direction of the magnetization is undetermined.
By becoming a magnet, this material has broken the rotational symmetry. The order
parameter M labels which of the various broken symmetry directions the material
has chosen.

The order parameter is a field: at each point in our magnet, M(x) tells the local
direction of the field near x. Why do we do this? Why would the magnetization
point in different directions in different parts of the magnet? Usually, the material
has lowest energy when the order parameter field is uniform, when the symmetry is
broken in the same way throughout space. In practice, though, the material often
doesn't break symmetry uniformly. Most pieces of iron don't appear magnetic,
simply because the local magnetization points in different directions at different
places. The magnetization is already there at the atomic level: to make a magnet,
you pound the different domains until they line up. We'll see in this section that
most of the interesting behavior we can study involves the way the order parameter
varies in space.

The order parameter field M(x) can be usefully visualized in two different
ways. On the one hand, oue can think of a little vector attached to each point in
space. On the other hand, we can think of it as a mapping from real space into
order paramcter space. That is, Mi is a function which takes different points in the
magnet onto the surface of a sphere (Figure 4). Mathematicians call the sphere S 2,
because it locally has two dimensions. (They don't care what dimension the sphere
is embedded in.)

Before varying our order parameter in space, let's develop a few more exam-
pies. The liquid crystal in LCD displays (like those in digital watches) are nemat-
ics. Nematics are made of long, thin molecules which tend to line up so that their

[4) Choosing an order parameter is an art. Usually it's a new phase which we don't understand yet,
and guessing the order parameter is a piece of figuring out what's going on. Also, there is often
more than one sensible choice. In magnets, jor example, one can treat Mf as a fixed-length vector
in S 2,, labelling the different broken symmetry states. This is the best choice at low temperatures,
where we study the elementary excitations and topological defects. For studying the transition
from low to high temperatures, when the magnetization goes to zero, it is better to consider AM
as a vector of varying length (a vector in IZ3). Finding the simplest description for your needs is

often the key to the problem.

[S1Most magnets are crystals, which already have broken the rotational symmetry. For some
"Heisenberg" magnets, the effects of the crystal on the magnetism is small. Magnets are re-
ally distinguished by the fact that they break time-reversal symmetry: if you reverse the arrow of

time, the magnetization would change direction!
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FIGURE 5 Nematic liquid crystal. Nematic liquid
crystals are made up of long, thin molecules that
prefer to align with one another. (Liquid crystal
watches are made of nematics.) Since they don't
care much which end is up, their order parameter
isn't precisely the vector i along the axis of the
molecules. Rather, it is a unit vector up to the
equivalence h _ -i. The order parameter
space is a half-sphere, with antipodal points on
the equator identified. Thus, for example, the

-- ---...- path shown over the top of the hemisphere is
a closed loop: the two intersections with the
equator correspond to the same orientations of
the nematic molecules in space.

-Uo.

IL kIL

FIGURE 6 Two-dimensional crystal. A'crystal consists of atoms arranged in regular,
repeating rows and columns. At high temperatures, or when the crystal is deformed or
defective, the atoms will be displaced from their lattice positions. The displacements i;
are shown. Even better, one can think of u(x) as the local translation needed to bring
the ideal lattice into registry with atoms in the local neighborhood of x. Also shown is
the ambiguity in the definition of u. Which "ideal" atom should we identify with a given
"real* one? This ambiguity makes the order parameter u equivalent to u + ma- + nay.
Instead of a vector in two-dimensional space, the order parameter space is a square
with periodic boundary conditions.
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FIGURE 7 Order parameter space for a two-dimensional crystal. Here we see that a
square with periodic boundary conditions is a torus. (A torus is a surface of a doughnut,
inner tube, or bagel, depending on your background.)

long axes are parallel. Nematic liquid crystals, like magnets, break the rotational
symmetry. Unlike magnets, though, the main interaction isn't to line up the north
poles, but to line up the axes. (Think of the molecules as American footballs: the
same up and down.) Thus the order parameter isn't a vector Mi but a headless vector
6 = -6. The order parameter space is a hemisphere, with opposing points along
the equator identified (Figure 5). This space is called 1?J2 by the mathematicians
(the projective plane), for obscure reasons.

For a crystal, the important degrees of freedom are associated with the broken
translational order. Consider a two-dimensional crystal which has lowest energy
when in a square lattice, but which is deformed away from that configuration (Fig-
ure 6). This deformation is described by an arrow connecting the undeformed ideal
lattice points with the actual positions of the atoms. If we are a bit more careful,
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we say that i(x) is that displacement needed to align the ideal lattice in the local
region onto the real one. By saying it this way, il is also defined between the lattice
positions: there still is a best displacement which locally lines up the two lattices.

The order parameter il isn't really a vector: there is a subtlety. In general.
which ideal atom you associate with a given real one is ambiguous. As shown in
Figure 6, the displacement vector il changes by a multiple of the lattice constant a
when we choose a different reference atom:

uE = it + ax=- i'+max+nay. (1)

The set of distinct order parameters forms a square with periodic boundary condi-
tions. As Figure 7 shows, a square with periodic boundary conditions has the same
topology as a torus, T-. (The torus is the surface of a doughnut, bagel, or inner
tube.)

Finally, let's mention that guessing the order parameter (or the broken symme-
try) isn't always so straightforward. For example, it took many years before anyone
figured out that the order parameter for superconductors and superfluid Helium 4
is a complex number ',. The order parameter field ?P(x) represents the "condenqivs
wave function," which (extremely loosely) is a single quantum state occupied by a
large fraction of the Cooprr pairs or helium atoms in the material. The correspond-
ing broken symmetry is closely related to the number of particles. In "symmetric,"
normal liquid helium, the local number of atoms is conserved; in superfluid helium,
the local number of atoms becomes indeterminate! (This is because many of the
atoms are condensed into that delocalized wave function.) Anyhow, the magnitude
of the complex number V is a fixed function of temperature, so the order parameter
space is the set of complex numbers of magnitude 1ý,J. Thus the order parameter
space for superconductors and superfluids is a circle S1.

Now we examine small deformations away from a uniform order parameter field.

FIGURE 8 One-dimensional crystal: phonons. The order parameter field for a one-
dimensional crystal is the local displacement u(z). Long wavelength waves in u(x)
have low frequencies, and cause sound. Crystals are rigid because of the broken
translational symmetry. Because they are rigid, they fight displacements. Because
there is an underlying translational symmetry, a uniform displacement costs no energy.
A nearly uniform displacement, thus, will cost little energy and, thus, will have a low
frequency. These low-frequency elementary excitations are the sound waves in crystals.
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III EXAMINE THE ELEMENTARY EXCITATIONS
Its amazing how slow human beings are. The atoms inside your eyelash collide with
one another billions of times during each time you blink your eye. It's not surprising,
then, that we spend most, of our time in condensed-matter physics studying those
things in materials that happen slowly. Typically only vast conspiracies of immense
numbers of atoms can produce the slow behavior that humans can perceive.

A good example is given by sound waves. We won't talk about sound waves in
air: air doesn't have any broken symmetries, so it doesn't belong in this paper.E61
Consider, instead, sound in the one-dimensional crystal shown in Figure 8. We
describe the material with an order parameter field u(x), where here x is the position
within the material and x - u(x) is the position of the reference atom within the
ideal crystal.

Now, there must be an energy cost for deforming the ideal crystal. There won't
be any cost, though, for a uniform translation: u(x) _ uo has the same energy as
the ideal crystal. (Shoving all the atoms to the right doesn't cost any energy.) So,
the energy will depend only on derivatives of tie function u(x). The simplest energy
that one can write looks like

2 (2)

(Higher derivatives won't be important for the low frequencies that humans can
hear.) Now, you may remember Newton's law F = ma. The force here is given by
the derivative of the energy F = -(d&/du). The mass is represented by the density
of the material p. Working out the math (a variational derivative and an integration
by parts, for those who are interested) gives us the equation

Pii (d'u•(3)

The solutions to this equation

U(~)= u10 cos (27r ( - - 1./At) (4)

represent phonons or sound waves. The wavelength of the sound waves is A, and
the frequency is v\. Plugging (4) into (3) gives us the relation

= (5)
A

(6] We argue here that low frequency excitations come from spontaneously broken symmetries.

They can also come from conserved quantities: since air cannot be created or destroyed, a long-

wavelength density wave cannot relax quickly.
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(a)

> (b)

FIGURE 9 (a) Magnets: spin waves. Magnets break the rotational invariance of space.
Because they resist twisting the magnetization locally but don't resist a uniform twist,
they have low-energy spin wave excitations. (b) Nematic liquid crystals: rotational
waves. Nematic liquid crystals also haye low-frequency rotational waves.

The frequency gets small only when the wavelength gets large. This is the vast
conspiracy: only huge sloshings of many atoms can happen slowly. Why does the
frequency get small? Well, there is no cost to a uniform translation, which is what
(4) looks like for infinite wavelength. Why is there no energy cost for a uniform dis-
placemfat ? Well, there is a translational symmetry: moving all the Ptoms the same
amount doesn't change their interactions. But haven't we broken that symmetry?
That is precisely the point.

Long after phonons were understood, Jeremy Goldstone started to think about
broken symmetries and order parameters in the abstract. He found a rather general
argument that, whenever a continuous symmetry (rotations, translations, SU(3),
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... ) is broken, long wavelength modulations in the symmetry direction should have
low frequencies. The fact that the lowest energy state has a broken symmetry
means that the system is stiff: modulating the order parameter will cost an energy
rather like that in Eq. (2). In crystals, the broken translational order introduces a
rigidity to shear deformations, and low frequency phonons (Figure 8). In magnets,
the broken rotational symmetry leads to a magnetic stiffness and spin waves (Fig-
ure 9(a)). In nematic liquid crystals, the broken rotational symmetry introduces an
orientational elastic st.ffness (it pours, but resists bending!) and rotational waves
(Figure 9(b)).

In superfluids, tie broken gauge symmetry leads to a stiffness which results
in the superfluidity. Superfluidity and superconductivity really aren't any more
amazing thait the rigidity of solids. Isn't it amazing that chairs are rigid? Push on
a few they on one side, and 109 atoms away they will move in lock-step. In the
same way, decreasing the flow in a superfluid must involve a cooperative change in
a macroscopic number of atoms, and thus never happens spontaneously any more
than two parts of the chair ever drift apart.

The low-frequency Goldstone modes in superfluids are heat waves! (Don't be
jealous: liquid helium has rather cold heat waves.) This is often called second sound,
but it is really a periodic modulation of the temperature which passes through the
material like sound does thlrough a metal.

O.K., now we're getting the idea. Just to round things out, what about su
perconductors? They've got a broken gauge symmetry and a stiffness to decays in
the superconducting current. What is the low-energy excitation? It doesn't have
one. But what about Goldstone's theorem? Well, you know about physicists and
theorems. ...

That's actually quite unfair: Goldstone surely had conditions on his theorem
which excluded superconductors. Actually, I believe Goldstone was studying su-
perconductors when he came up with his theorem. It's just that everybody forgot
the extra conditions, and just remembered that you always got a low frequency
mode when you broke a continuous symmetry. We, of course, understood all along
why tilere isn't a Goldstone mode for superconductors: it's related to the Meissner
effect. The high-energy physicists forgot, though, and had to rediscover it for them-
selves. Now we all call the loophole in Goldstone's theorem the Higgs mechanism,
because (to be truthful) Higgs and his high-energy friends found a much simpler
and more elegant explanation than we had. We'll discuss Meissner effects and the
Higgs mechanism in another chapter. 4

I'd like to end this section, though, by bringing up another exception to Gold-
stone's theorem: one we've known about even longer, but which we don't have a
nice explanation for. What about the orientational order in crystals? Crystals break
both the continuous translational order and the continuous orientational order. The
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FIGURE 10 Dislocation in a crystal. Here is a topological defect in a crystal. We can
see that one of the rows of atoms on the right disappears halfway through our sample.
The place where it disappears is a defect, because it doesn't locally look like a piece
of the perfect crystal. It is a topological defect, because it can't be fixed by any local
rearrangement. No reshuffling of atoms in the middle of the sample can change the fact
that five rows enter from the right, and only four leave from the left! The Burger's vector
of a dislocation is the net number of extra rows and columns, combined into a vector
(columns, rows).

phonons are the Goldstone modes for the translations, but there are no orientational

Goldstone modes.[7] We'll discuss this further in another chapter,4 but I think this
is one of the most interesting unsolved basic questions in the subject.

[71in two dimensions, crystals provide another loophole in a well-known theorem. Mermin and
Wagner proved many years ago that two-dimensional systems with a continuous symmetry cannot
have a broken symmetry at finite temperature. At least, that's the English phrase everyone quotes
when they discuss the theorem: the theorem is stated in a much more technical way. Now, crystals
in two dimensions actually don't break the translational symmetry: at finite temperatures, the
atoms wiggle enough so that the atoms don't sit in lock-step over infinite distances; this is correctly
stated as an important application of the theorem. But the crystals do have a broken orientational
symmetry: the crystal axes point in exactly the same directions throughout space. Again, the
theorem has technical conditions which exclude crystalline orientational order in the presence of

translational order.
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FIGURE 11 Loop around the dislocation, mapped onto order parameter space. How do
we think about our defect in terms of order parameters and order parameter spaces?
Consider a closed loop around the defect. The order parameter field u changes as we
move around the loop. The positions of the atoms around the loop with respect to their
local "ideal" lattice drifts upward continuously as we traverse the loop. This precisely
corresponds to a loop around the order parameter space: the loop passes once through
the hole in the torus. A loop around the hole corresponds to an extra column of atoms.
Moving the atoms slightly will deform the loop, but won't change the number of times
the loop winds through or around the hole. Two loops which traverse the torus the
same number of times through and around are equivalent. The equivalence classes
are labelled precisely by pairs of integers (just like the Burger's vectors), and the first
homotopy group of the torus is Z x Z.
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IV. CLASSIFY THE TOPOLOGICAL DEFECTS
When I was in graduate school, the big fashion was topological defects. Everybody
was studying homotopy groups and finding exotic systems to write papers about.
It was, in the end, a reasonable thing to do.18] It is true that in a typical application
you'll be able to figure out what the defects are without homotopy theory. You'll
spend forever drawing pictures to convince anyone else. though. Most important,
homotopy theory helps you to think about defects.

A defect is a tear in the order parameter field. A topological defect is a tear that
can't be patched. Consider the piece of two-dimensional crystal shown in Figure 10.
Starting in the middle of the region shown, there is an extra row of atoms. (This
is called a dislocation.) Away from the middle, the crystal locally looks fine: it's
a little distorted, but there is no problem seeing the square grid and defining an
order parameter. Can we rearrange the atoms in a small region around the start of
the extra row, and patch the defect?

No. The problem is that we can tell there is an extra row without ever coming
near to the center. The traditional way of doing this is to traverse a large loop
surrounding the defect, and count the net number of rows crossed on the path. In
the path shown, there are two rows going up and three going down: no matter how
far we stay from the ceilter, there will naturally always be an extra row on the
right.

How can we generalize this basic idea to a general problem with a broken sym-
metry? Remember that the order parameter space for the two-dimensional square
crystal is a torus (see Figure 7). Remember that the order parameter at a point
is that translation which aligns a perfect square grid to the deformed grid at that
point. Now, what is the order parameter far to the left of the defect (a), compared
to the value far to the right (d)? Clearly, the lattice to the right is shifted vertically
by half a lattice constant: the order parameter has been shifted halfway around
the torus. As shown in Figure 11, along the top half of a clockwise loop, the order
parameter (position of the atom within the unit cell) moves upward, and along
the bottom half, again moves upward. All in all, the order parameter circles once
around the torus. The winding number around the torus is the net number of times
the torus is circumnavigated when the defect is orbited once.

This is why they are called topological defects. Topology is the study of curves
and surfaces where bending and twisting is ignored. An order parameter field, no
matter how contorted, which doesn't wind around the torus can always be smoothly
bent and twisted back into a uniform state. If along any loop, though, the order
parameter winds either around the hole or through it a net number of times, then
enclosed in that loop is a defect which cannot be bent or twisted flat: the winding
number can't change by an integer in a smooth and continuous fashion.

How do we categorize the defects for two-dimensional square crystals? Well,
there are two integers: the number of times we go around the central hole and the

[8]The next fashion, catastrophe theory, never became important for anything.
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number of times we pass through it. In the traditional description, this corresponds
precisely to the number of extra rows and columns of atoms we pass by. This was
called the Burger's vector in the old days. and nobody needed to learn about tori
to understand it. We now call it the first homotopy group of the torus:

HI1(T 2 ) = Z x 2 (6)

where Z represents the integers. That is. a defect is labeled by two integers (in. n).
where m represents the number of extra rows of atoms on the right-hand part of
the loop, and n represents the number of extra columns of atoms on the bottom.

Here's where in the lecture I showed the practical importance of topological
defects. Unfortunately for you, I can't enclose a soft copper tube for you to play
with, the way I did at the lecture. They're a few cents each. and machinists on two
continents have been quite happy to cut them up for my demonstrations, but they
don't pack well into books. Anyhow, most metals, and copper in particular, exhibits
what is called work hardening. It's easy to bend the tube, but it's amazingly tough
to bend it back. The soft original copper is relatively defect-free. To bend, the crystal
has to create lots of line dislocations, which move around to produce the bending.[9]
The line defects get tangled up and get in the way of any new defects. So. when
you try to bend the tube-back, the metal becomes much stiffer. Work hardening
has had a noticable impact on the popular culture. The magician effortlessly bends
the metal bar, and the strongman can't straighten it.... Superman bends the rod
into a pair of handcuffs for the criminals....

Before we explain why these curves form a group, let's give some more ex-
amples of topological defects and how they can be classified. Figure 12(a) shows a
"hedgehog" defect for a magnet. The magnetization simply points straight out from
the center in all directions. How can we tell that there is a defect, always staying
far away? Since this is a point defect in three dimensions, we have to surround
it with a sphere. As we move around on this sphere in ordinary space, the order
parameter moves around the order parameter space (which also happens to be a
sphere, of radius IMi). In fact, the order parameter space is covered exactly once
as we surround the defect. This is called the wrapping number and doesn't change
as we wiggle the magnetization in smooth ways. The point defects of magnets are
classified by the wrapping number:

112(S 2) = Z. (7)

P1]This again is the mysterious lack of rotational Goldstone modes in crystals.
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(a) (b)

0

FIGURE 12 (a) Hedgehog defect. Magnets have no line defects (you can't lasso a
basketball), but do have point defects. Here is shown the hedgehog defect, i(x) =
M0.z. You can't surround a point defect in three dimensions with a loop, but you can
enclose it in a sphere. The order parameter space, remember, is also a sphere. The
order parameter field takes the enclosing sphere and maps it onto the order parameter
space, wrapping it exactly once. The point defects in magnets are categorized by
this wrapping number- the second Homotopy group of the sphere is Z, the integers.
(b) Defect line in a nematic liquid crystal. You can't lasso the sphere, but you can lasso
a hemisphere! Here is the defect corresponding to the path shown in Figure 5. As you
pass clockwise around the defect line, the order parameter rotates counterclockwise
by 1800. This path on Figure 5 would actually have wrapped around the right-hand
side of the hemisphere. Wrapping around the left-hand side would have produced a
defect which rotated clockwise by 1800. (Imagine that!) The path in Figure 5 is halfway
in between, and illustrates that these two defects are really not different topologically.

Here, the 2 subscript says that we're studying the second Homotopy group. It rep-
resents the fact that we are surrounding the defect with a two-dimensional spherical
surface, rather than the one-dimensional curve we used in the crystal.(',,

You might get the impression that a strength 7 defect is really just seven
strength 1 defects, stuffed together. You'd be quite right: occasionally, they do
bunch up, but usually big ones decompose into small ones. This doesn't mean,
though, that adding two defects always gives a bigger one. In nematic liquid crystals,

['lThe zeroth homotopy group classifies domain walls. The third homotopy group, applied to
defects in three-dimensional materials, classifies what the condensed matter people call textures
and the particle people sometimes call skyrmions. The fourth homotopy group, applied to defects
in space-time path integrals, classifies types of instantons.
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two line defects are as good as none! Magnets didn't have any line defects: a loop
in real space never surrounds something it can't smooth out. Formally, the first
homotopy group of the sphere is zero: you can't loop a basketball. For a nematic
liquid crystal, though, the order parameter space was a hemisphere (Figure 5).
There is a loop on the hemisphere in Figure 5 that you can't get rid of by twisting
and stretching. It doesn't look like a loop, but you have to remember that the two
opposing points on the equator really represent the same nematic orientation. The
corresponding defect has a director ficld n wh'-h rotates 1800 as the defect is orbited:
Figure 12(b) shows one typical configuration (called an s = -1/2 defect). Now, if
you put two of these defects together. they cancel. (I can't draw the pictures, but
consider it a challenging exercise in geometric visualization.) Nematic line defects
add modulo 2, like clock arithmetic in elementary school:

H~l(TP 2 ) = Z2. (8)

Two parallel defects can coalesce and heal, even though each one individually is
stable: each goes halfway around the sphere, and the whole loop can be shrunk to
zero.

& /

/
U

FIGURE 13 Multiplying two loops. The product of two loops is given by starting from
their intersection, traversing the first loop, and then traversing the second. The inverse
of a loop is clearly the same loop travelled backward: compose the two, and one can
shrink them continuously back to nothing. This definition makes the homotopy classes
into a group. This multiplication law has a physical interpretation. If two defect lines
ccaleczo, th=c, komotopy class must, of course, be given by the loop enclosing both.
This large loop can be deformed into two little loops, so the homotopy class of the
coalesced line defect is the product of the homotopy classes of the individual defects.
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(a) (b)

a a

a / _

(C)

FIGURE 14 Defect entanglement. (a) Can a defect line of class a pass by a line of
class i, without getting topologically entangled? (b) We see that we can pass by if we
leave a trail: is the connecting double line topologically trivial? Encircle the double line
by a loop. The loop can be wiggled and twisted off the double line, but it still circles
around the two legs of the defects a and 0. (c) The homotopy class of the loop is
precisely /Oa3-1 a-', which is trivial precisely when Oa = a/. Thus two defect lines
can pass by one another if their homotopy classes commute!
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Finally, why are these defect categories a group? A group is a set with a mul-
tiplication law, not necessarily commutative, and an inverse for each element. For
the first homotopy group, the elements of the group are equivalence classes of loops:
two loops are equivalent if one can be stretched and twisted onto the other, staying
on the manifold at all times.["] For example, any loop going through the hole from
the top (as in the top right-hand torus in Figure 13) is equivalent to any other one.
To multiply a loop u and a loop v, one must first make sure that they meet at some
point (by dragging them together, probably). Then one defines a new loop u 0 v
by traversing first the loop u and then v.[12]

The inverse of a loop u is just the loop which runs along the same path in
the reverse direction. The identity element consists of the equivalence class of loops
which don't enclose a hole: they can all be contracted smoothly to a point (and thus
to one another). Finally, the multiplication law has a direct physical implication:
encircling two defect lines of strength u and v is completely equivalent to encircling
one defect of strength u 0 v.

This all seems pretty trivial: maybe thinking about order parameter spaces and
loops helps one think more clearly, but are there any real uses for talking about the
group structure? Let me conclude this paper with an amazing, physically interesting
consequence of the multiplication laws we described. There is a fine discussion of
this in Mermin's article, 3 but I learned about it from Dan Stein's thesis.5

Can two defect lines cross one another? Figure 14(a) shows two defect lines,
of strength (homotopy type) a and 3, which are not parallel. Suppose there is an
external force pulling the a defect past the 3 one. Clearly, if we bend and stretch
the defect as shown in Figure 14(b), it can pass by, but there is a trail left behind.
of two defect lines, a can really leave 3 behind only if it is topologically possible to
erase the trail. Can the two lines annihilate one another? Only if their net strength
is zero, as measured by the loop in Figure 14(b).

Now, get two wires and some string. Bend the wires into the shape found in
Figure 14(b). Tie the string into a fairly large loop, surrounding the doubled portion.
Wiggle the string around, and try to get the string out from around the doubled
section. You'll find that you can't completely remove the string (no fair pulling the
string past the cut ends of the defect lines!), but that you can slide it downward
into the configuration shown in Figuie 14(c).

Now, in Figure 14(c) we see that each wire is encircled once clockwise and
once counterclockwise. Don't they cancel? Not necessarily! If you look carefully,
the order of traversal is such that the net homotopy class is /3a3- 1a-', which is
only the identity if 3 and a commute. Thus the physical entanglement problem

["ilA loop is a continuous mapping from the circle into the order parameter space: 0 -- u(O), 0 <

0 < 21r. When we encircle the defect with a loop, we get a loop in order parameter space as shown
in Figure 4: 0 -. (0) is the loop in real space, and 0 -- u(9(0)) is the loop in order parameter
space. Two loops are equivalent if there is a continuous one-parameter family of loops connecting
one to the other: u E v if there exists ut(0) continuous both in 0 and in 0 < t < 1, with uo = u
and ul =V.
[1 21That is, u 9 v(O) - u(20) for 0 < 0 < 7r, and - v(20) for 7r < 0 < 27r.
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for defects is directly connected to the group structure of the loops: commutative
defects can pass through one another; noncommutative defects entangle.

I'd like to be able to tell you that the work hardening in copper is due to
topological entanglements of defects. It wouldn't be true. The homotopy group of
dislocation lines in fcc copper is commutative. (It's rather like the two-dimensional
square lattice: if a = (m, n) and '3 = (o,p) with m,nn,o,p the number of extra
horizontal and vertical lines of atoms, then a3 = (m + o, n + p) = '3a.) The reason
dislocation lines in copper don't pass through one another is energetic, not topolog-
ical. The two dislocation lines interact strongly with one another, and energetically
get stuck when they try to cross. Remember at the beginning of the paper, I said
that there were gaps in the system: the topological theory can only say when things
are impossible to do, not when they are difficult to do.

I'd like to be able to tell you that this beautiful connection between the commu-
tativity of the group and the entanglement of defect lines is nonetheless important
in lots of other contexts. That, too, would not be true. There are two types of
materials I know of which are supposed to suffer from defect lines which topo-
logical entangle. The first are biaxial nematics, which were thoroughly analyzed
theoretically before anyone found one. The other are the metallic glasses, where
David Nelson has a theory of defect lines needed to relieve the frustration. We'll
discuss closely related theories in section 3. Nelson's defects don't commute, and so
can't cross one another. He originally hoped to explain the freezing of the metallic
glasses into random configurations as an entanglement of defect lines. Nobody has
ever been able to take this idea and turn it into a real calculation, though.

Enough, then, of the beautiful and elegant world of homotopy theory: let's
begin to think about what order parameter configurations are actually formed in
practice.
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Meissner Effects and Constraints

In the last paper,' I explained how condensed-matter and high-energy
physicists used topological theories to describe defects excitations in solids.
In this paper, I'm going to make fun of topology.['] Actually, I'm going
to start by talking about constraints, then "massive" fields and how they
produce constraints. I'll then turn to the Meissner-Higgs effect in super-
conductors, and finally explain why I don't understand crystals.

I. CONSTRAINTS
Consider Figure 1. See the beautiful ellipses and hyperbolas? Remember that topol-
ogy treats ellipses as rubber bands. Any topological theory has got to miss the key

[1NEverything I know about focal conics and smectic liquid crystals 7 was explained to me by

Maurice Kliman, who also was one of the originators of the topological theory of defects. No
disrespect is intended.

1991 Lectures in Complex Systems, SFI Studies in the Sciences of Complexity,
Lect. Vol. IV, Eds. L. Nadel & D. Stein, Addison-Wesley, 1992 267
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FIGURE 1 Ellipses: Defects in a Liquid Crystal. This is a drop of smectic A liquid
crystal, squeezed between two microscope slides. The microscope is focused on
the surface of the drop, where it contacts the glass. Notice the beautiful, geometrical
ellipses. Notice that a line seems to exit from the focus of each ellipse. This line turns
out to be a hyperbola (Figure 4). The 'visible ellipses and the hyperbolas are where
the smectic layers pinch off to form cusps. These defects are not topological: they are
geometrical consequenices of the constraint of equal layer spacing. From Ref. 3, Figure
7.2, photo by C. Williams.

feature of the beautiful structures produced here: the geometrically perfect ellipses,
with dark lines coming out of one focus.

Figure 1 Is a photograph of a drop of fluid, squeezed between two muicroscope
slides. The microscope is focused, let's say, on the surface between the fluid and
the bottom muicroscope slide: the ellipses are stuck onto the glass. The sizes of the
ellipses are roughly given by the thickness of the fluid layer. The fluid is a smectic A
liquid crystal. deGennese has a fine discussion and some nice pictures, too.
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FIGURE 2 Order in Smectic Liquid Crystals. Smectic liquid crystals are formed of
layers of molecules. In each layer, the molecules are in a random, liquid configuration.
Crystals have broken translational symmetry along three independent axes; smectic A
liquid crystals have broken translational symmetry in only one direction (normal to the
layers).

In 1910, Friedel figured out why this liquid crystal forms these geometrical
structures. lie learned all he needed to know from his high-school geometry class.
He actually worked backward, and used the ellipses to deduce what kind of broken
symmetry the liquid had. Since none of you were taught about the cyclides of Dupin
in high school,P2 ] I'd better start with the broken symmetry and work "'rward.

Smectic liquids form equally spaced layers. Some of them are compounds that,
like soap, naturally form membranes and films: I think smectic is the Greek word
for soap Others are long thin molecules like nematics, which for some reason not
only line up but segregate into planes (Figure 2). The molecules have liquid-like
order in the planes. Like crystals, they have a broken translational symmetry, but
only in one of the three directions.

Now, the important excitations for smectics are those that bend the layers. In
Figure 3, we see a two-dimensional analogue of the smectic liquid crystals: equally
spaced curves in the plane. Suppose we start with one curve and work outward.
As you can see from the figure, the next curve is not precisely the same shape:
keeping the surfaces at an equal spacing makes concave regions become sharper and
convex regions become more rounded. It is easy to see that eventually the concave
regions will become pinched: these pinches are the defects. They are not topological
defects, since rounding them a bit makes them go away: they are geometrical defects
produced by the constraint of equal layer spacing.

12]Ber*rand Fourcade tells me that even the French stopped teaching them.
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FIGURE 3 Equally Spaced Layers: Defect Formation. Here we consider a two-
dimensional analogue of a smectic liquid crystal. The smectic layers are represented
by curves in the plane. The lowest energy state, of course, consists of parallel straight
layers, but the layers often settle into more complicated patterns, with defects. For
reasons that we discuss in this paper, and which are not completely understood,
smectic layers will deform by bending, but will remain strictly equally spaced (except
very near boundaries and defects). The constraint of equal layer spacing has weird
nonlocal consequences. First, one can see that as one moves outward the concave
regions become more pinched, and eventually form cusps. Second, one can see that
a line perpendicular to one layer (a geherator) will be perpendicular to the next one,
too. These generators intersect on a surface known as the evolute, and it is when the
layers hit the evolute that a defect occurs. As one sees here, the defect is a line of
pinched surfaces: in three dimensions it is typically a two-dimensional surface. This
costs lots of energy. The only way in two dimensions to have a point-like low-energy
defect is to have concentric circles: only circles have zero-dimensional evolutes. The
only way in three dimensions to have one-dimensional evolutes 4 is to have cyclides
of Dupin: the defects are ellipses and hyperbolas passing through one another's foci
(Figures 1 and 4).
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FIGURE 4 Focal Conic Defect. Here we see the smectic surfaces which form the
focal conic defects seen in Figure 1. These are the cyclides of Dupin. The surfaces
go from banana-shaped to squashed doughnuts to apple-shaped. The points on the
bananas and the dimples at the stem and bottom of the apples are defects, which
scatter light and show up in Figure 1. (Only the dimples of the apple are shown.)
The banana defects lie on an ellipse, and the apple defects lie on a hyperbola which
passes through the focus of the ellipse. Usually, the whole pattern isn't found in the
experimental sample. As you see in Figure 1, the domains aggregate together in
clumps. Each ellipse in Figure 1 has a conical region for its smectic layers.

Most curves, like the one shown in Figure 3, form one-dimensional pinched re-
gions: only concentric circles and structures made from them can keep the pinched
regions to points. In three dimensions, the only equally spaced surfaces with points
as pinched regions are concentric spheres. Now, what Friedel knew and you don't
know is that the only three-dimensional surfaces with one-dimensional line-like
defects are the cyclides of Dupin, 4 and the pinched regions form ellipses and hyper-
bolas.[31

Figure 4 shows the cyclides of Dupin. Notice that they pinch off on two curves:
an ellipse and a hyperbola. The hyperbola is perpendicular to the plane of the
ellipse, and passes through its focus. That's what you see streaming out of the
foci in the photo, and why you don't see one for each focus. My contribution to

[3 lActually, the canal surfaces also have singularities confined to one-dimensional regions, 47, but
let's not get bogged down.
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FIGURE 5 Focal Conic Defect Meshing onto Concentric Spheres. The conical regions
in Figure 4 combine into compound defects by meshing onto the concentric sphere
defect. Concentric spheres are the only surfaces with zero-dimensional defects. The
surfaces on the edges of the cones mesh smoothly onto the concentric spheres.

the field (with Maurice KI6man) was to realize that these cyclides of Dupin fit to-
gether nicely inside concentric spheres, which explained neatly the ways the ellipses
always seemed to fit together (Figure 5). Maybe the concentric spheres form be-
cause the layers nucleate on a dust particle on one of the microscope slides: when
the spheres touch the other slide, the concentric spheres get twisted (they like to
sit perpendicular to the glass) and the ellipses and hyperbolas form to relieve the
strain.

Now, why do I show you this? It isn't just to show that there is more to the world
than topology. Mostly, it's to illustrate the two themes of this paper: constraints
and expulsion.

If we define an order parameter ni for the smectic to be the unit normal to
the smectic layers (ii 2 = 1), then the constraint that the layers be equally spaced
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implies
/an,/Oy - Ony/az

curln= anl/z -Onl/Oz) =0. (1)
(any/ax- anzlay

(This is derived, for those who know a bit about vector calculus, in the Appendix.)
This is a remarkably powerful constraint. For example, knowing the position of one
layer determines all the others! We show this mathematically in the Appendix, but
you saw it physically in Figure 3: given one layer, there is only one way to place
the next one preserving exactly equal spacing.

There is a pretty good analogy here to analytic continuation. For those of you
who know about complex analysis, you know that an analytic function obeys the
Cauchy-Riemann equations. If we let n(x + iy) = n,(x + iy) + iny(x + iy) be an
analytic function, then

anjlax - anlay)an,/:ay + an,,lax ) = . 2

As you know, analytic functions have really bizarre properties. If you know an
analytic function in a small region, you can figure it out everywhere else, just like
the order parameter in smectics. The point singularities of analytic functions have
a rich and interesting classification (simple poles, essential singularities,.. .). Both
in analytic functions and in our smectic problem, constraints on the derivatives of
our order parameters produced really bizarre, nonlocal, geometrical consequences.

II. MASSIVE FIELDS
We've discovered that constraints can have beautiful, geometrical consequences.
How are the constraints enforced? Clearly, it is possible to stretch the smectic
layers apart or to compress them together: why doesn't this happen in practice,
especially when the layers are being bent and twisted? The curl of h is constrained
to zero. Why are magnetic fields pushed completely out of superconductors? The
magnetic field is constrained to zero. Why isn't it possible to find an isolated quark
in nature? Quarks have non-zero "color," and the net color is constrained to zero.

These constraints come from minimizing the energy. Saying that magnetic fields
can happen inside superconductors is just like saying that marbles can sit on the
side of a hill: it can happen, but not if the marbles are allowed to roll to minimize
their energy. Under what conditions does the energy enforce a constraint? We say
that it happens when the order parameter field develops a mass. We'll explain this
term in a moment, but let's first give a simple example.

Suppose we have a fluid in one dimension. The density of a fluid is the important
variable in describing its state. Suppose the'density of the fluid is po + p(z), where

pa is the ideal density (which the fluid would have if left to itself) and the order
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parameter p(x) describes the deviation from the ideal density. A sensible free energy
might be

Efiuid J dx (1/2)(dp/dz) 2 + (1/2)rp'2 . (3)

The first term in the energy resists sudden changes in the density: having a high-
density region right next to a low-density region costs extra. The second term in the
energy says that deviations from the mean density cost energy, with m a coefficient
which says how much deviations cost. Unlike phonons, where the order parameter
u(x) could be uniformly shifted without energy cost, here the lowest-energy state
happens when the density is at its mean value p(x) = 0.

What happens when we try to find the minimum energy state? Clearly the
best we can get is the ideal state p(x) =_ 0, which has zero energy 4 uid. Perhaps,
though, we're pulling on the density at the two ends (Figure 6). If the liquid is in a
trough of length L, we'll insist that p(O) = pi and p(L) = pf. What configuration
p(x) minimizes the energy then? Clearly, it should sag towards p0 inside, but how?

Here I'll show you a simple case of what's called the calculus of variations. I
apologize for the math, but it is really a useful method. The trick is to realize that
if p(x) is the minimum energy configuration, then p(x) + 6(x) must have a higher
energy, whatever 6(x) we-might choose.

-•(p )d-6 + #(p)= ++mp(x)6(x)+ + mb, dx >O (4)PD +d +) - E(2 - mdx Ž- (4)

PP

FIGURE 6 Massive Fields Decay Exponentially. Minimizing the energy -fluid in
equation (liquid), with boundary conditions p(O) = pi and p(L) = pf. It is easy to
understand physically what is happening. The system wants to achieve p = 0, and it
sags to that value as quickly as it can, balancing the costs of (dp/dx) 2 energy against
the gain. The solution decays exponentially to zero with a decay constant V/-.
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Now, if we confine our attention to small 6(x), we can ignore the last two terms
(because they are quadratic. rather than linear, in 6). The first term we integrate
by parts, so

[L dX d6 dp = (bdp) _ ____ dp 5
d dx dx (dx) -d d 2  (5)

Now, 6 mustn't change the values at the endpoints, so 6(0) = 6(L) = 0, and the
boundary terms in Eq. (5) drop out. We're left, then, with the equation

(p+ 6) - E(p) • dx (dax-+ rnp(x))6(x) 0 0. (6)

Now, this must be true for any 6(x) we choose. This can only happen if -d 2p/dX2 +
mp(x) = 0, so p" = mp.

The solutions to this equation are, of course, p = Ae-v'-' + Bev'd-'. We can
vary the arbitrary constants A and B to match the boundary conditions p(O) = pi
and p(L) = pf, and we see (Figure 6) that p is expelled from the interior: pulling
it on the boundary only affects a region of length v/i-, and the order parameter
exponentially decays into the bulk. p is constrained to zero in the inside of the
sample!

Pb Nb

FIGURE 7 Superconductors Expel Magnetic Fields. A magnetic field passing
through a metal will be pushed out when the metal is cooled through its
superconducting transitions temperature. This can happen in two different ways.
In type I superconductors like lead (chemical symbol Pb), the superconductivity is
pushed entirely outside the sample. In type II superconductors like niobium (Nb), the
magnetic field is broken up and confined to defect lines called vortices. In both cases,
the magnetic field is swept out of the remainder of the sample. The magnetic field
penetrates a distance A ,- I00A into the sample from the boundaries or from the
vortex lines.
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(a)•• • (b)

FIGURE 8 (a) Superfluid Free Energy, T > T,: Unbroken Symmetry. The free
energy for a normal metal or fluid, above the superconducting or superfluid transition
temperature, for a uniform order parameter field 0. The vertical axis represents the
energy aCIV2 + 31;b14 , and the horizontal axes represent the real and imaginary parts
of 0. The coefficient a > 0, so the minimum of the energy is at 0 = 0. Notice that the
energy is invariant under the symmetry ip -- eiko (corresponding to rotating the figure
about the vertical). This is a symmetry of the free energy. Notice also that the lowest
energy state V = 0 is also-unchanged by this rotation: the symmetry is unbroken above
T,. (b) Superfluid Free Energy: T < T,: Broken Symmetry. The free energy esuperfluid

for helium below the superfluid transition temperature. The energy now looks like a
Mexican hat: it is still invariant under rotations about the vertical axis. Since now a < 0,
the energy is at a minimum along a circle, of radius I¢k = V/-a-/20 and arbitrary phase
0. The superfluid must choose between these various possible phases, and that choice
breaks the symmetry. This is a good example of spontaneous symmetry breaking: just
as the magnetization of a magnet selects a direction in space and breaks rotational
invariance, the superconductor picks out a value of 0.

Why do we call this a mass? The name comes from particle physics. The photon
is massless. Two charges el and e2 separated by a distance r interact by a force
whose magnitude goes as ele 2 /r 2 : this is Coulomb's law. The particle physicists
interpret this force in terms of the two particles exchanging "virtual" photons. (I
think of the 1/r 2 decay as the virtual photons being diluted over a sphere of radius
r.) Now, the strong interaction between protons and neutrons has a different form:
the force between them is always attractive, and goes as e-r/r 2. The exponential
decay is extremely important, since it keeps the nuclei of different atoms from
attracting one another. (We'd all have collapsed into neutron stars or worse were
it not there!) At long distances, the particle physicists interpret this force as the
proton and neutron exchanging virtual pions.[4] Since the pion isn't massless, the

[4] At shorter distances, the picture is quarks exchanging gluons. The gluons have color, though,
so the proton and neutron can't exchange them at long distances. Since colorless glueballs, if
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virtual pion field decays exponentially for exactly the same reason that p(x) decayed
in our example above.

So, to enforce a constraint, we need to give the corresponding field a mass. Let's
see how that is done.

III. THE MEISSNER-HIGGS EFFECT
In this section, I want to explain how superconductors expel magnetic field. This is a
really beautiful argument, which I've basically taken from Coleman's presentation. 2

I'm afraid that there is some math and a lot of physics that I need to introduce.
Most of you will get lost at some point: skip onto the next section when you tire
of this one.

A. INTRODUCTION TO THE MEISSNER EFFECT. Superconductors are named for
their ability to carry currents of electricity with absolutely no losses. They have
another, closely related property which is no less amazing: they are a perfect shield
for magnetic fields. Remember the old science fiction stories about the scientist who
finds a material which is impervious to the gravitational field, paints the bottom of
his spacecraft with it, and falls to the moon? Superconductors work that way for
magnetic fields.

Ashcroft and Mermin have a nice, not too technical discussion of superconduc-
tors in one of the last chapters in their textbook.' Figure 7 shows the two types
of superconductcrs, represented by lead and niobium. At high temperatures, when
the materials asen't superconducting, the magnetic field penetrates the materials
almost as if they weren't there. (Iron would pull the magnetic field lines inward.)
Lead, when superconducting, pushes the magnetic field out: just as for the ex-
ample in section II, the field a distance r inward from the boundary decays like
B = Boe-'IA. If you put too high a field, the lead will give up and let the field in,
but it will stop superconducting.

On the right, we see that niobium behaves a bit differently. It expels small
magnetic fields like lead does, but larger fields are pushed into thin threads, called
vortex lines. These two general categories are (rather unimaginatively) called type
I and type II superconductors. The vortex lines are the topological defects for
the superconductor.8 Superconductors are described by a complex number ip =
pei9 , whose magnitude 1 - p is roughly constant. The order parameter at low
temperatures is the phase 0, and thus the order parameter space is a circle S 1.
A vortex line must pass through any loop around which the phase of the order
parameter changes by 27r. The magnetic field in type II superconductors decays

they exist, are much more massive than pions, the dominant interaction for long distances is pion

exchange.
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like B = Boe -r/A where here r is the distance to the vortex line. The magnetic
field is squeezed out of the bulk of the material into these defects.

So, the magnetic field isn't actually stopped; it just peters out. What kind of
a leaky shield is that? Actually, it's about as good as one can hope: after all, the
magnetic field won't be able to tell it's in a superconductor until it gets inside
a bit! (Atoms don't go superconducting, only huge heaps of atoms together do,
so the field has to pass through a heap or two to realize that it isn't wanted.)
Anyhow, A is usually pretty small, a few hundred Angstroms or so. An 0.1mm
thin layer of superconducting paint naively would let through a field one part in
e- 100 0,, 10-4000 of the original. Unfortunately, it usually doesn't work so well: a
few vortex lines get stuck on junk in the paint, and let in comparatively large fields.

Before we can explain the repulsion of magnetic fields, we should explore the
broken symmetry. Let's start with superfluids, which are simpler.

B. SUPERFLUID FREE ENERGY AND SPONTANEOUS SYMMETRY BREAKING. The
order parameter for a superfluid, just as for a superconductor, is a complex number
¢. The free energy for the superfluid is usually written as1 s1

(superfluid = J dVV 12 + akb1 2 + 01014  (7)

Above the superconducting transition temperature To, the coefficient a > 0. If we
imagine a constant order parameter field, the free energy forms a bowl (Figure 8(a))
with a minimum at zero, as a function of the real and imaginary part of ;b. Zero-

order parameter corresponds to a normal metal (for a superconductor) or a normal
liquid (for a superfluid).

Below To, a < 0, and the potential is at a minimum for p0 = =V-/2:
the potential in the complex plane looks like a Mexican hat (Figure 8(b)). Now
there are many possible ground states: for any 9, a constant order parameter field
V) = poe'9 is a ground state. Because the free energy depends only on f[bI and

IV4'I, it is symmetric to changing the phase 0: the superconducting state chooses
a specific value for 0 and, thus, spontaneously breaks the symmetry. The circle of
ground states in the brim of the Maxican hat is the order parameter space for the
superconductor.

We can write the free energy in terms of 0:

Esuperfluid = JdVIVP12 + P21VO12 + aP 2 +13p4 . (8)

[N]There are two new symbols here: V = (a/ax, a/ay) and 1x12 = "<X, where -* is the complex
conjugate of x. Written out in components,

= J dV( \a) *(!i) + (I) L)

You can think of this as a mathematical expression of the Mexican hat potential in Figure 8(b),

together with a resistance to abrupt changes in the order parameter.



Meissner Effects and Constraints 279

As we discussed in the previous section, p is "massive." In Figure 8(b), if we
vary p slightly away from po, the energy increases quadratically: ap 2+!3p4 0(ap+
.3p') ; (a +6 Op)(p- po)2 'The effective free energy for p near Pa is precisely of the
form (3) (except for unimportant constant shifts), with 7n = a+ 63p. Thus just as
before, p will rapidly be drawn to its minimum energy state po. Because p is massive,
it is basically constrained to stay at its minimum value. This is why it is ignored at
low temperatures in writing the order parameter field. Here, the constraint doesn't
do anything interesting: our next constraint will be more interesting.

The 0 field keeps the symmetry of the original model: rotating it to 0 + O9
doesn't change the energy a bit. It is a Goldstone mode for our problem, and long
wavelength plane waves produce what is known as "second sound" in superfluids.
Second sound turns out to be heat waves: pulses of temperature which propogate
like waves through the superfluid.

C. SUPERCONDUCTING FREE ENERGY AND THE HIGGS MECHANISM. To describe
the expulsion of magnetic field from superconductors. I have to tell you how mag-
netic fields interact with the stiperconducting order. I'm afraid this will be rather
sketchy, and I apologize for trying.

First of all. the particles which superconduct are pairs of electrons. Electrons
are charged, and repel one another with electric fields. Thus the electrons interact
with electric fields. We learn in the second semester of physics (if we're lucky) that
electric and magnetic fields are closely related to one another. (This was discovered
by Einstein: a moving electric E field develops a magnetic B component.)

Now, the E and B fields can be written at the same time in terms of another
field .4. It is this new field which is easiest to work with. In particular,

B=curlA= (O Az aAy 0A4 OA . 0AY , ) (9)
ay 0z ' 0Z x" Oz Oy "

The magnetic energy is Emagnetn = f dV B2 .
Now, you remember that I mentioned earlier that light (the photon) is massless?

You may know that light is sometimes called "electromagnetic radiation." The
"order parameter field" for light is precisely the .4 field. We can see by expanding
B 2 in terms of .4 that the energy far the A field

Fmagnetic= dV(O z ) 2)+ (10)-9y 0Z +"(0

doesn't have any terms like A 2. When we add the energy from the electric fields,
this is still true: light is massless because the electromagnetic energy involves only
derivatives of A.

Now, I need to know how the electromagnetic order parameter A interacts
with the superconducting order parameter ý'. I'll just tell you. The free energy for
a superconductor looks like

&superconductor = J dV IV, - iAti' 2 + altlp2 + 31V)14 + B2 . (11)
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If we set V) = 0, we get the magnetic energy B 2 for the A field. If we set A = 0,
we get the superfluid energy (8). 1 don't know of a way to motivate the way in
which we couple the A field to the gradient VO. I don't think anyone has a simple
derivation. This way of connecting the two is called "minimal coupling," which just
gives a name to the unexplained fact that the simplest way of coupling the two
gives the right answer.

Now, if we assume T < T,, so a < 0 and p -'- poe , we find

E J dVp2V9-AI2 + a- 9z +.... (12)

We want to know if A or 0 is going to develop a mass. The problem is: £superconductor

doesn't look quite like the form (3) for either one. If we combine the two into a
new order parameter field C = 70 - A, and use the fact that the second partial
derivative 0 20/Oz(y = 201/dyaz, we see that

curl C = 8y OY ")

=B

so 0 oc + (adVp C2a+(%)CY) + (13)

Thus the new, combined field C is massive. C will be constrained to zero in the
bulk, exponentially decaying like Coe-pOr. The magnetic field B = curl C thus also
decays, and the penetration depth A = 1/po.

We started with a massless photon field A and a massless Goldstone mode
0. We ended up with only one field C, with a mass. Did we lose something? No,
actually C has three components: two components corresponding to the original
two polarizations of light and one component corresponding to the Goldstone mode.
Coleman 2 says "the Goldstone bosor eats the photon, and gains a mass!"

The Weinberg-Salaam theory of the weak interaction is exactly analogous to the
theory of superconductivity. The role of lead or niobium is played by the vacuum.
The free energy of the universe has an SU(3) symmetry, which is spontaneously
broken to a smaller symmetry SU(2) x U(1). The Wt and Z bosons which now
mediate the weak interaction used to be massless: they and the photon were all part
of one big A field. If current theories of cosmology are true, this "superconducting"
transition occurred in the first instants after the Big Bang.

Now, after explaining superconductors, the weak interaction, and the phase
transition in the early universe, let's return to why we don't understand crystals.
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FIGURE 9 Polycrystal. Many crystalline materials, such as metals, normally
aren't made of a single crystal. They are formed from many crystalline domains: a
polycrystalline configuration. I show a schematic of a polycrystal here. The important
thing to notice is that the atoms within a domain are almost undeformed except right
next to the domain wall. All the rotational deformation is expelled into sharp domain
boundaries.

IV. THE MYSTERY OF THE CRYSTALS
Normally, when you think of crystals, you think of diamonds, snowflakes, or maybe
salt crystals.[6] These are single crystals: the sodium and chlorine atoms in a grain
of salt sit in registry all the way across the grain, giving it its cubical shape. Did
you know that metals form crystals? In the last paper,' I mentioned dislocation
lines in a copper crystal. Metals don't have big facets and corners because they

a] Some of you will think of wine glasses. They are made of glass and aren't crystals at all.
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are polycrystalline. The atoms in a metal also sit on a regular lattice, but the
metal breaks up into domains in which the lattices sit at various angles (Figure 9).
Because there are lots of small domains, copper doesn't form facets like salt grains
and snowflakes do.7 ]

What Ming Huang (one of my students5 ) and I have been trying to explain for
years is why those little domains form. It's easy to see that different regions might
grow with different orientations (Figure 10). When they touch, the different domains
will start pushing and twisting one another, trying to make one big domain. It isn't
hard to believe that they will stop growing after a while, fighting one another to a
standstill. What we've been trying to understand, though. is why the final state is
made of perfect little crystals separated by sharp domain walls.
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FIGURE 10 Growing a Crystal from a Liquid: Forming a Polycrystal. Polycrystals
can form for lots of reasons. If one cools a liquid qjickly, one can find that crystalline
regions can form in many different places almost simultaneously. Since they will
have random orientations, they won't match up when they meet. When they do
meet, rearrangements of atoms will occur to try to realign and merge the domains
(coarsening). As we continue to cool and wait, this process will eventually stop, leaving
us with different domains.

[7]Metal crystals are sometimes found in nature. The growth takes place so slowly that a single
crystal can form. The same idea happens with rock candy: you get a glass if you cool sugar syrup

quickly, but if you evaporate a sugar solution slowly, you can get big crystals.
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Now, I don't want to exaggerate. There are perfectly good explanations for
why crystals form domain walls. They just aren't as beautiful and general as they
might be. They don't fit in with the general ideas of broken symmetries and order
parameters: they apply only to crystals. Our explanation for why superconducters
don't have a Goldstone mode was perfectly okay before Higgs came, too. He made
it beautiful and generalized it to explain something completely different. Ming and
I want to understand grain boundaries in a way which will make simple and clear
where else similar phenomena might occur. At least, we'd like to understand why
focal conics occur at the same time. Domains formed by breaking translational
symmetry in one direction and in three directions should have the same kind of
explanation!

Figure 11 shows a domain wall in a crystal. The crystalline ground state ro-
tates as one crosses the domain wall. The atoms at the wall are quite unhappy. You'd

< tR

FIGURE 11 Domain Wall. Here we see a single domain wall. Notice that the domain
wall can be also thought of as a series of dislocations. The strain field inside the crystal
due to a line of dislocations can be shown to decay exponentially, just as the magnetic
field dies away around a vortex line.
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think that they would push and pull on their neighbors, and that there would be
strains leaking far into the crystal. This isn't true. In fact, there is a well-known
rule in the materials science literature that the strain field from a domain wall dies
away exponentially as one enters the grain.

Doesn't that sound like a Meissner effect?
There are more analogies. Crystals break both the translational and the rota-

tional symmetry of liquids. Many liquid crystals only break the rotational symmetry.
They have Goldstone rotational waves: if you rotate a large region inside a liquid
crystal, it will cost little energy and will slowly rotate back. When the translational
symmetry is also broken, the rotational Goldstone mode disappears! If I :otate

(b)

"4-.

FIGURE 12 (a) Rotational distortion of a crystal. If we take a thick piece of metal and
rotate one end with respect to another, it will start by bending uniformly. As it continues
to bend, dislocations will form to ease the bending strain. These line dislocations will
start off distributed irregularly through the sample. (b) Domain walls form to expel
rotations. If we hold the rotation for a long time and let the dislocations move around,
they will lower their energy by arranging themselves into domain walls. Between the
domain walls we find undistorted crystal. This process is called polygonalization.
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one piece of a crystal with respect to another, it costs an enormous energy (Fig-
ure 12(a)). If I let the distorted crystal rearrange locally to reach equilibrium, the
rotational deformation is expelled into grain boundaries (Figure 12(b)), a process
known in the field as polygonalization. Just like the massless photon developed a
mass when the superconducting transition broke the gauge symmetry, the massless
rotational mode develops a mass when the translational symmetry is broken.

This is surely also related to some of the old problems in the topological the-
ory of defects. In describing a crystal. everybody uses the displacement field u(x)
and its derivatives. Now, as we saw in the last paper,8 u(x) describes the broken
translational order, but not the broken orientational order. W hy don't we also have
a rotation matrix R(x)? For example. in Figure 11, R(x) shifts abruptly from one
side of the domain wall to the other. Mermin 6 discusses some of the weird behavior
one gets following this path. The point is that R(x) seems to be constrained: it
doesn't change on iUs own but follows the broken translational order. Keeping it
as an order parameter seems no more necessary than keeping p = Iik1 around in a
superconductor: only 0 is massless, and p just wiggles around P0 in a boring way.

Now, Ming and I have spent a huge amount of time trying to make these words
into a mathematical theory. (We started with smectics, then studied superconduc-
tors, then thought about some ideas of Toner and Nelson,....) Ming has gone on
to better things, and I'm -still futzing with it. I can summarize where we are right
now. Suppose we consider a rotationally distorted two-dimensional crystal (Fig-
ure 12(a)). We can define a rotational order parameter by looking at the angle of
the nearest-neighbor bonds:

R(x)= ( cos0 sinO0 (14)
( -sinO cosO (

The translational order parameter 6f is just as it always was: if i is the original
position and p(x) is the corresponding position in the ideal lattice,

uW = p- x) - (15)

Now, the free energy can only depend on gradients of il, since it is translationally
invariant. It also cannot change if we perform a uniform rotation: R -- RoR, p -
Rop. From this, we can see that the free energy must be written in terms of gradients
of R(x) and the particular combination[8]

2 (9 j
C., = bw, ZRk.( u +bk1 ). (16)

k=1

A reasonable free energy for a crystal then becomes

Ecrystal = (VO) 2 + 2Z (ij + ji + A + f.i + ( 1 2 -21 (17)
3 2 2

[SThijq k analogous tn the niirnik4, coupling term VO - A in the free energy for a superconductor.
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This is just the normal elastic energy everybody uses, except for the third term
multiplied by K. Normally, the strain matrix e is defined to be symmetric, so this
term is then zero.

Our free energy doesn't keep c automatically symmetric precisely because we
have R(x) as an independent degree of freedom. The antisymmetric part measures
the amount that R disagrees with the local gradients of 6. It turns out that this
antisymmetric part for the crystalline free energy is analogous to the current for
the superconductor, which has a Meissner effect.t91

There are several things I haven't been able to do, though. First, I don't think
C12 - C21 is expelled quite like its analogue in the superconductor. I think we can
show, though, that it is a boring variable like p was. Second, I haven't a clue on
how to show that grains exist. To show that grains exist I have to show a constraint
like VO = 0!

We started this paper by admiring the focal conic defects in smectic liquid
crystals: beautiful ellipses and hyperbolas which are due not to topology but to
geometrical consequences of a constraint. We saw how constraints can be enforced
by the energy: "massive" modes decay exponentially. We saw explicitly how this
occurs in superconductors-the magnetic field is constrained to zero because the
photon and the Goldstone boson for the superconducting gauge symmetry combine
into a massive particle--Finally, we discussed analogous effects in the everyday
problem of grain boundaries in crystals, and realized that we don't really understand
them in a deep sense.

APPENDIX: THE SMECTIC ORDER PARAMETER
Here we derive the consequences for layered systems of the constraint that the layers
be equally spaced. Suppose that there are a stack of (bent) sheets, equally spaced
from one to the next, with separation a. Suppose that the unit normal to these
sheets at a position i is given by hz. Consider traveling around a loop C, crossing
various layers as we go around (Figure 13). The number of layers we cross is given
by the line integral

(-)Jif-de= net #crossed . (18)

If the layers exist throughout the region without any defects, then the net number
crossed around any closed loop must be zero. Using Stokes' theorem, this integral
over C is equal to an integral over the area A swept oiit by the curve:

/ifi.de= /curl h.dA. (19)

[91It is the gradient of t cry.tai with respect to 0, just as the current is the gradient of 46superconductor

with respect to A. I thank Alan Luther for pointing this out.
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A

FIGURE 13 Equally spaced layers imply curl n = 0. Smectic layers, with a loop
C enclosing an area A. The dot product ih df gives the cosine of the angle of the
curve C with respect to the layers, and a/ cos 0 is the length of curve C between two
layers, so 1/a fc i . df gives the net number of layers crossed by the curve C. (A layer
crossed first forward and then backward cancels, of course). Since in a closed loop the
net number of layers crossed must be zero (assuming no dislocations), this must be
zero. By Stokes' theorem, fc ft • d1. = fA curl n -dA. This is true for any little area A,
so curl n -0.

But for this to be true for all areas A, curl ft must be zero.
Now, we already know that 02 = 1. The derivative 8ti2/lz., of course, must

be zero, so using the product rule

=0. (20)

Now, since we know curl ii = 0, we know from Eq. (9) that

09ii _ 8 fia (21)

oz. -z 1
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Finally, combining these, we find

n i = _(n. V)h = 0. (22)

This implies that h doesn't change when you move in the i direction. This means
that ii will be perpendicular to the next layer as well: that is, a straight line per-
pendicular to one layer will be perpendicular to every layer it crosses.

These perpendicular lines are called generators. We qualitatively knew already
that one layer determined its surroundings; now we have a simple geometrical rule
describing this nonlocal constraint. For your information, the defects occur where
the generators cross (as shown in Figure 3): this surface is called the evolute, or
surface of centers, for the layer.
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Fractal Time Dynamics:
From Glasses to Turbulence

One major theme in physics has been to find the right scale for a problem.
How high can the highest mountains be on Earth and Mars? What is the size of a
hydrogen atom? What is the density of the atmosphere at 35,000 feet? These types
of problems represent great successes in physics, in part because the predictions
can be tested, and agreement leads to confidence in understanding basic physics.
These types of problems are prevalent in Lhe teaching of physics.

Another, newer theme is to investigate problems where many scales enter. but
no scale dominates, i.e., there is no characteristic size. The struggles and successes
of meeting the challenge of scale invariance in the field of phase transitions are well
known. The scaling enters through the divergence of a correlation length which oc-
curs at a finite temperature. Clustering of correlations (spin clusters, lattice gas par-
ticle clusters, etc.) occurs, and one cluster percolates through the material when the
correlation length diverges. The modern methods for approaching these problems
is through the renormalization group which also allows the (usually non-integer)
critical exponents to be calculated from fixed points of transformation equations
which relate different scales to each other. Mandelbrot,6 throughout his long ca-
reer, has shown that a fractal geometry can underlie the appearance of non-integer
exponents from describing the coastline of England to the 2.5 dimensions of a 3-D

1991 Lectures in Complex Systems, SFI Studies in the Sciences of Complexity,
Leoc. Vol. IV, Eds. L. Nadel & D. Stein, Addison-Wesley, 1992 289
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percolation cluster. The idea of a fractal dimension (or physics in non-integer di-
mensions) has become commonplace in many fields of science including physical,
engineering, biological, social, and econorruic.

In these lectures, the struggles and successes of applying scaling ideas to trans-
port and relaxation in amorphous materials will be presented. The first section will
rely heavily on the notion of fractal time, our first topic for discussion. Fractal-time
random walks will prove useful for understanding scaling properties of glassy ma-
terials. Next, we will turn our attention to random walks with fractal trajectories,
called Levy flights. When Kolmogorov space-time scaling is applied to these Levy
flights a novel view of turbulent diffusion arises.

1. FRACTAL TIME' 0"15

Let Vb(t) be the probability density that the duration between events is t. This
might represent the time it takes for a particle to jump out of a trap. A simple
choice for Vp(t) is the exponential, ?k(t) = exp(-At). This density has a well-defined
mean time (t) = 1/A. Let us investigate VP(s), the Fourier transform of 0(t). We
will be interested in asyfriptotically long times (or equivalently small s) behavior.

V)(s) = j exp(-st)iP(t)dt = 1 - s(t) + O(s2). (1)

The appearance of s to the first power is, in some sense, in agreement with the notion
that time is one dimensional, and that it flows smoothly forward. The general result
of Eq. (1) is certainly true for the case for 0(t) = Aexp(- At), where

A(s) = 1 - + 2+ (s).

What would happen if(t) were infinite? If 0(t) - t---', (0 < 3 < 1) as t -- c,
then 0(t) is normalizable, but its filst moment diverges. What would 10(t) look like
in this case? Certainly, the expansion in integer powers of s will not apply when (t)
is infinite. Let us consider a Vb(t) which is a sum of exponentials where scales of all
orders of magnitude enter,

(t)= 1NN NAi exp(-Mt), (A < N < 1). (2)
j=l

The mean value of ¢k(t) is given by

1 ] = ( ) (3)
_N E
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To make further progress in analyzing i'(t), let us look at its Fourier transform

0(s) = exp(-si)VI(t)dt = 1 - N [(NA)) (4)N =1[s + Aj]. 4

Note that O(s) satisfies a scaling relation,

(S) IV1s) [1 - N]A(5(A ) + (s+ (5)

"whose homogeneous part ?p(s) = NI(s/A) has a solution of the form,

VI(s) = s-, with/3 = InN (6)lnA

This hints that an expansion of V)(s) for small s will involve non-integer powers of
s. An exact analysis can be performed by substituting, for 1/[s + Ai] in Eq. (4), its
own inverse Mellin transform to find'1

27riO/(s) = 1--N f Y'(NA)J 7' -•,)dc(

N c:- j=1 sin(-c) (7)

(0 < c = Re f < 1). Interchanging the sum and integral yields

2iri7jý(s) N I + -7N' d.(8)
N c-i. [sin(rc){ 1 - NA()

The integrand has simple poles from the sin(7rE) term at c = 0, ±1, ±2,..., and from
the factor in the denominator when c = -lnN/lnA ± 27rij/lnA (j = 0, 1,2,...).
Translating the contour of Re c = -oo and taking account of the poles crossed, we
find for c < 1 that

O(s) = 1 + s'3K(s) + 1- N (-1 s'NA'
N [Aj - njj=l

with 3 given by Eq. (6), and where K(s) is periodic in Ins with period ln A, as
given by

1- N : 7rNA'exp(-2xijlnslnA)
K(s)- Nln=A. sin(irz) (9)

where x = - In N/In A + 27rij/ In A.

While the above has been somewhat technical, it should assure the reader that
expansions in non-integer exponents are legitimate and arise in probability the-
ory for transforms of temporal probability distributions which possess infinite first
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moments. We will encounter similar examples for random walk jump distributions
whose second moments are infinite.

The sp term, somehow, implies that time is a j3-dimensional quantity with

,3 < 1. When (t) is finite, this implies /3 = 1. In this sense unity is the upper critical
dimension of time. A simulation of the above temporal process would find waiting
time durations of A-', )A2 ,. .-. , A -, etc., with waits an order of magnitude longer
(in base A) occurring an order of magnitude less often (in base N). The similarity
definition of a fractal dimension is the log (# subclusters/cluster)/ log (scale factor).
For our fractal-time waiting process, the jumps occur in self-similar clusters with
about N jumps, each separated in time by 1/A occurring before a wait of 1/A 2

occurs. Then another cluster of about N closely spaced (in time) jumps occurs
before another wait of 1/A 2 occurs. After about N of these clusters of jumps occurs.
a wait of 1/A• arises, and so on, and so on in a hierarchical fashion. We find self-
similar clusters of jumps with about N subclusters/cluster and differing in time
duration between jumps by about a factor of A-'. This is in accord with treating
/3 as the fractal dimension of the process. The jumps do not occur at a nice well-
defined rate, but in a very patchy manner. If one made marks on a time axis when
jumps occur, then the set of points would look like the points in a random Cantor
set with fractal point set dimension fl. The number of points M(T) on a line of
length T, versus M(T/14 the number of points on a line of length T/A, gives the
relation M(T) = NM(T/A). This equation has a solution in the form M(T) = T'
with /3 = In N/IIn A.

2. STRETCHED EXPONENTIAL RELAXATION (A FRACTAL
TIME-INITIATED PROCESS)' 2

,Let us consider a model of relaxation for a glassy material. Suppose a glassy material

supports the motion of defects. The defects are viewed as encapsulating free volume
which when transported to a frozen-in region of the glass can cause a relaxation to
occur. The frozen-in part of the material may be a dipole (so dielectric relaxation
occurs) or a polymer chain segment (so mechanical relaxation occurs), etc. Let us
assume that there are N mobile defects in the material which can move between
Vsites. Assume there is a frozen-in region at the origin of our coordinate system, and
that the N defects are randomly placed in the material. Let 0(t) be the probability
that no defect has reached the origin by time t. We formally write 0(t) as

I 1-t F(r, r)d (10)
i

where F(r, r) is the probability density for a random walker starting at site r, to
reach the origin at time r. F is called a first passage time probability. The integral
allows for a first passage of a walker to the origin in the time interval (0, t). This
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encounters will cause the relaxation to occur. Note we sum over all initial starting
points for each walker, and the probability of starting from any site is I/V. Thus,
the term within the brackets is the probability that a particular random walker did
not reach the origin by t'me t. We raise the bracket to the Nth power to account
for none of the N random walkers reaching the origin by time t. Let us take a
thermodynamic limit of N - oo, V -- oo, but c = N/V remaining constant. In
this limit 0(t) becomes

o(t) =exp -c F(r, r)dr (11)

The argument in the brackets is nunus the flux of random walkers into the origin at
time t. This is the type of expression Smoluchkowski would have written to describe
this reaction scheme. We can ' -write Eq. (11) by noting that any of the sites from
which a walker can reach the origin within a time t are, by symmetry, the same
set of sites a walker starting at the origin can reach by time t. We can now write
Eq. (11) as

0(t) = exp[-S(t)] (12)

where S(t) is the distinct number of sites a random walker starting at the origin
visits within a time t. The--walker may make 100 jumps, but only visit 28 different
sites. S(t) would then be 28, and walkers starting from these 28 sites could reach
the origin within time t. Let us now take an interlude into the theory of random
walks to learn how to calculate S(t).

MONTROLL-WEISS CONTINUOUS-TIME RANDOM WALKS"

Let us first consider the statistics of n-step random walks. We will not yet focus on
the statistics of random time interval occurring between jumps. Let's begin with an
equation for Pn+ 1 (r) the probability that a random walker beginning at the origin
reaches site r on its (n + 1)st step. We can write this probability in terms of the
probability p(r) that a single step has a displacement r, via

P.+ 1 (r) = r - r1)p(r'). (13)

It is useful to introduce a generating function G(r; z) defined as

00

G(r; z)= Z Pn(r)zn" (14)

Multiplying both sides of Eq. (14) by z(n+l), and summing over all n, let us re-rite
Eq. (13) as a Green's function equation

G(r;z) - z Z G(r - r'; z)p(r') = 6r,o. (15)
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We can also write P,(r) as

P,(r) = & Fnm(r)Pm(O) + , (16)
m=O

where F&(r) is the probability that on the nth step the walker reaches site r for the

first time. This calculation allows for the walker reaching site r for the first time
after n - rn steps and then returning in m steps (i.e.. zero displacement -n t',' last
m steps). Let us now define the generating function

F(r; = z Fn(r)z'. (17)

Multiplying Eq. (16) by z'• and summing over n (and taking advantage of the con-
volution form of the equation) leads to the following generating function equation,

F(r; z) = [G(r; z) - 5r,o] (18)
G(r = 0; z)

The number of distinct sites, S,, visited in an n-step random walk is closely related
to the first passage time-probabilities by

S, = I + E[Flkr) + .. . + F.(r)]. (19)
r

Forming a generating function for S, we find

S(z) =>jISnZ'
nO

= + z - F(r) + z -2 Zj_7i(r) + F2 (r)]

+.. + zn E[Fl(r) + . .. + Fn(r)] +. .. (0

1 4 (20)Z b,0 + Z E[zr,(-) + + ZnFnr() + ]

SZ
S1

-- ZF(r: z)

z 1

(1 - z) 2 G(r 0; z)

The next stage of complication is to introduce the waiting time density ?P(t) gov-
erning the duration between steps. Let w',(t) be the probability density that the
izwh jump occurs at time t. This can be written in terms of ;b(t) as

0.(0 = j Vi-I(t - ,-)t(-)T. (21)
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Taking Laplace transforms, we find t',(s) = [Vo'(s)]". The probability density to
reach site r for thie first time at time t is given by

F(r, t) FriF ((r)-,,,(t).

Its Laplace space representation has the form of a generating function

F(r, s) / ,xp(-st)F(r, t)dt = Z /:;,(r)[R(s)]. (22)
• ) 1=0

We can now see i hat by replacing z by w'(s) in Eq. (20) that we have an expression
for the generating function for visiting n distinct sites when the nth jump occurs
at time t. We need just one more adjustment to take account of the nth jump
occurring at time t - r and no jump occurring in the remaining time. i.e.. n jumps
occur but the nth jump occurs before time t. We write S(t) as

S(t) = It S, t'n(t - r)W(r)dr (23)
n=iJ

where W(7) =J, i,(u)du is the probability that the time between jumps is longer
than 7. The Laplace transform of W(t) is [1 - t,(s)J/s. Using Eq. (20), we write
S(t), in Laplace space. as

(s) =S(z = (s))(1 - (s))
s) (24)

[s(1 - i,(s))]G(0; iý,(s))

In three dimensions, at long times (small s) G(0; z) - const. + 0(1 - z).
For a continuous-time random process where (t) is finite, then i.,(s) - 1 - s(t),

and S(s) -- 1/s 2 , so S(t) - t. The fraftal time case of (t) infinite is more interesting.
There we have L'(s) -- I - s.3, with 3 < 1, so S(t) -. tO.

BACK TO THE RELAXATION LAW

Let us now substitute our calculation for S(t) back into the relaxation law equation
(12).

€(t) , exp(-ct) (t) finite;
exp(-ctO) (t) infinite.

We arrive at simple exponential decay if a time scale exists. and stretched exponen-
tial decay if it, doesn't. Both cases are examples of probability limit distributions.
This can explain the ubiquity of the stretched exponential law for glassy materials.
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3. DIVERGENCE OF THE TIME SCALE'
If we rewrite 0(t) = exp(-ct0) as

4()=exp [ ~ 3

then

"=

It is known that for many glassy materials an empirical fit to data yields

[const. Ti
=0exp T--to T (27)

with r0 and To being constants. This is known as the Vogel-Fulcher-Tammann law.
In our model, our defects can cluster as the temperature is lowered to lower the
entropy of the system. This clustering would be due to an attractive interaction
between the defects. We assume a lattice gas model of defects versus non-defect
sites. In a mean field model, the correlation length diverges with temperature as

I•= 1/(T- To)1/2 . Let us assume that singlet defects are more mobile than doublet,
triplet,.., clusters, so we will focus on the temperature-dependent population of
the singlets which we denote by cl. The probability a defect is at a site and that it
is not correlated with other defects is given by

Cl = c(1-c)vf, (28)

where ý is the correlation length, and Ve = ý3 is the correlation volume. For our
lattice gas model of the defects cl - exp(-cVf) ~ exp(-c/[T - T013/ 2), and thus
using Eq. (26) we find

exp ([T(- To]-!). (29)

While this differs from the Vogel by having an exponent of 3/2 versus 1, it has
proven in several comparison to provide the better fit.1,2

If the defects do not cluster, then one can still obtain the stretched exponen-
tial law, but none need not obtain a Vogel-type law. This is the case for SiO 2. 0

is a stretched exponential, but r- is Arrhenius. This is consistent with our model
as the law for 0(t) focuses on how a defect moves, while the law for r focuses on
the temperature dependence of the mobile defect population. High above the glass
transition temperature, Tg, many mobile defects exist. Their movement breaks up
rigidity in the material. As the temperature is lowered, the clustering of defects re-
duces the mobile defect population. At Tg presumably the decline in mobile defects
allows rigidity to percolate through the sample. This is the glass transition. Below
Tg, mobile defects still exist and relaxation still occurs. The time-scale dynamics
for r is focused on To, the temperature when mobile defects disappear, and not on
Tg. This is why T < Tg.
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4. FRACTAL RANDOM WALKS IN TURBULENCE 14

RICHARDSON'S LAW

In 1926, Lewis Fry Richardson 9 discussed his discovery that the usual Brownian
diffusion law for a mean square displacement, (R2 (t)) = 6Dt, does not hold for diffu-
sion in a turbulent fluid. In his studies of the dispersal of smoke from smokestacks on
windy days, and of the separation of floating objects in turbulent waters, Richard-
son announced that

(R2(t)) = Dt 3 (for turbulent diffubion). (30)

In trying to understand this result, Richardson drew pictures somewhat reminis-
cent of fractal patterns trying to show how a drop of dye would be pulled apart,
over many scales, in a turbulent flow. He felt that eddies of all sizes would cause
the relative separation of two particles in a turbulent flow to have a diffusion con-
stant which depended on their positions. Taking the diffusion law (R 2 (t)) = Dt
with D = D(R) = R4/ 3, Richardson could recover the correct scaling of Eq. (27),
but with so many scales entering a turbulent flow that Richardson wondered how
to mathematically describ-& turbulent trajectories. He wrote, "The failure of the
dispersal of a point-charge to serve as a mathematical element, from which the dis-
persal of an extended system may be built up, appears to be intimately connected
with the fact that in the atmosphere dispersal goes on in patches." Differential
equations are local, so they cannot possibly properly treat global spatial-temporal
motions set up by a hierarchy of vortices. This led Richardson to even question the
existence of differential equation for the description of turbulent flows. He asked,
"Does the Wind Possess a Velocity? This question at first sight foolish improves
upon acquaintance." Richardson then gave the Weierstrass function as an exam-
ple of an everywhere non-differentiable function and thought it might somehow be
connected with turbulent flows.

We will take a circuitous route to deriving Richardson's law. We will begin
by discussing the Central Limit Theorem'for adding random variables whose sec-
ond moments exist. We will then study Levy's generalization for summing random
variables with infinite moments. By introducing trajectories associated with infi-
nite moment random variable sums, we will be able to describe a scale-invariant
random-walk process. Finally, incorporating Kolmogorov space-time scaling into
these trajectories, we will arrive at Richardson's law. Incidentally, along the way
we will use the Weierstrass function, mentioned by Richardson, as a generator for
our scale-invariant fractal space-time random walks.
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LEVY FLIGHTS 5,'

Add up several identically distributed random variables Xi, each with zero mean

4y~an -- o'13Xl +-.. -- +o'noXn, (31)

with the condition that c ,6 -r. The value of each variable Xi can be thought
of as a step in a random walk. Each jump length is chosen from a distribution p(x).
Levy asked the question of when can the distribution of the sum of n steps pn(Z) (up
to some scale factors) be the same as the distribution of any term in the sum, p(z).
This is basically the question of fractals: when does the whole (the sum) look like
one of its parts? One answer to this question is well known. A sum of Gaussians is
a Gaussian. Setting each oi = 1 for /3 = 2, we obtain c 2 = n. This means for adding
Gaussians that the variance of the sum is the sum of the variances. The distribution
of the Xi's is p(z) = (27r)-1/ 2 exp(-z 2), the distribution of Yn = (n)-'/ 2 F, i X, is
p,(z) = (2irn)-1/2 exp(-X 2/n). So p(z) and pn(z) have the same distribution up
to the scale factor n. In Fourier space (x -- k)pn(k) has a simple form,

pn(k) = j pn(z)exp(ikx)dz = exp(-nk 2). (32)

Note that the second moment of pn(z) is given by -0 2p0(k = O)/Ok2 = n. Levy
discovered that other solutions existed for Eq. (27) such that pn(z) and p(z) had
the same distribution. He found this to be the case when

p,(k) = exp(-const.lkl#) (for 0 < /3 < 2). (33)

The/3 = 2 case is the Gaussian which we have just studied. For /3 < 2, we note
that (x2) = -Opn(k = 0)/49k 2 is infinite. These random walks with steps with
infinite second moments are known as Levy flights. It now seems obvious that to
have scale-invariant distributions, we would need to sum up random variables with
no scale. As we saw above, if we have finite second moments, then we will get the
Gaussian distribution.

The exponent /3 will turn out to be the dimension of the point set visited by
a Levy flight. For the Gaussian case where /3 = 2, consider a random walk of N 2

steps. The probability distribution pn(z) is a Gaussian of standard deviation of
N. Each of the N 2 jumps has a Gaussian distribution with a standard deviation,
011/2 = unity, so one can consider the distribution after N 2 steps to be comprised
of N 2 Gaussians, each scaled down in standard deviation from N to unity. Thus
a fractal dimension of In N 2/ In N = 2 can be ascribed to standard random walks
whose steps have finite mean square displacements. This is also in accord with the
knowledge that a random walker visits every point in two dimensions, but not so
in higher dimensions.

To get a deeper understanding of Eq. (3t), let us write pn(z) as

Pn W = I Pn -I(Z - z')p(x')d--' (34)
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which transforms in Fourier space to (due to its convolution form)

p.(k) = [p(k)]-. (35)

For small k (large x),

p(k)= p(x)exp(-ikx)dx= 1- () ( 2 )k 2 +O(k 3 ) (36)

when (x 2) is finite. For this case p(k) ~ exp(-(x2)k 2/2), p,(k) , exp(-n(, 2)k2/2),
so pn(x) asymptotically behaves like a Gaussian with variance n.

How can we expand p(k) when (x2) is infinite? Our analysis now parallels the
discussion of fractal time, except here we address the properties of fractal space. For
a specific example let us construct a random walk without a characteristic jumps
size. Let

p "= N - 1 0 Ng-'[ 6x,bp + 6 z,b-]. (37)
j=0

Jumps of size ±1, ±b, ±b2, etc. can occur, but jumps an order of magnitude longer
in base b occur an order ofinagnitude less often in base N. We make about N jumps
of length unity before, on the average, a jump of length b occurs, and so on, until
in a hierarchical fashion patchy clusters of all sizes are formed. We expect a fractal
dimension of In N/In b to appear. We need to analyze p(k) and, taking the Fourier
transform of p(x), we arrive at

p(k) = N - N' cos(bik) (38)
j=O

which is precisely the Weierstrass function called for by Richardson. We could again
go through the Mellin transform analysis introduced in our discussion of fractal
time, but here we will just note that p(k) satisfies the scaling relation

p(k) = N-';(bk) + [N 1 ] cos(k) (35)

which has a solution which includes a term of the form

p(k) - 1 -Ik ~ -exp(-lkl) with In ) (40)

This exponential form with the fractional power comprises the non-Gaussian solu-
tions to Levy's question addressed in Eq. (33). If one wants to add random variables
(take a random walk) and have the probability distribution after n steps look like
the probability distribution after one step (except for a change of scale), then your
random variables are either Gaussian or have infinite second moments. This means
the solution is either Gaussian or fractal.
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LEVY WALKS14

How does one use Levy flights in physics, since mean square distances are infinite.
One approach to make the problem more physical is to take account of how long it
would take to traverse a distance r. Let xI(r, t) be the probability density to make
a jump of displacement r, in a time t. We write

1P (r, t) = V)(tlr)p(r) , (41)

where p(r), as before, is the probability that a jump of length r occurs. Vp(rlt)
is the conditional probability that, given a jump of length r occurred, it took a
time t to complete. For Levy flights, we choose p(r) '.- frll+,' with 0 < 2 so (r 2)
diverges. If we choose Vb(tlr) = V(t) so jump distances and jump times are chosen
independently, then a divergent (r2) will still result. A coupled space-time memory
can, however, get around this problem. Let us chose

V)(tlr) = b (t -r )(42)

where v(r) is the velocity of a jump of length r. The form 0(tlr) = exp(-[t -
r/v(r)]2 ) would do just a.-well. Fortunately, Kolmogorov has taught us for isotropic
homogeneous turbulent flows how to calculate v(r). He assumed that the average
dissipation c, over a scale r would be independent of r. Now c is the energy/time
,, v(r) 2/t = v(r)3 /r. For the dissipation to be constant, we need

v(r) = r1/3(Kolmogorov scaling). (43)

The energy E is proportional to v2 
-, r2 3 , and its Fourier transform Ek - k-' 3

This -5/3 law is the best known version of Kolmogorov scaling. With this informa-
tion we can now proceed to calculate the mean square displacement for turbulent
diffusion.

TURBULENT DIFFUSION: A SPACE-TIME FRACTAL14

We need to generalize our random walk to include the coupled memory *(r,t).
Note fractal time involved being stuck at one place for a hierarchical distribution
of time. For Levy walks the walker gets stuck in the same momentum state for a
hierarchical distribution of times. The probability density Q(r, t) for reaching a site
r exactly at time t is given by

Q(r, t) j Q(r - .', t - r)*(r', T)dT + 6r,o6(t) (44)

where we account for reaching r - r' at time t - r, and then taking a jump of
displacement r' which takes a time r to complete. This is the coupled memory
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continuous-time version of Eq. (13) for Pn(r). In Fourier-Laplace space we find, for
the Green's function propagator.

Q(k,s) = [1 - i(k, s)]-'. (45)

The probability P(r,t) to be at site r at time t is a little bit more complicated
because one can take a jump which passes r at time t, but the jump continues and
ends at a different site at a later time. For simplicity, one can get the right scaling
by just focusing on walks which reach site r at time t - 7. and the next jump is yet
completed by time t. Then

P(r,t) = Q(r,t - 7) 1 - V,(z)dz d7 (46)

whcre v,(t) = T 'I(r.t). In Fourier-Laplace space

1 - w (s)
P(k,s) = s[1 - O(k,s)] (47)

For a walk with (r) = 0. p(r) -•I['1+3 , and ý,(tlr) = b(t - r/v(r)) with v(r) = r 1/3

we find, for (r 2 (t)) = -- C-1a2'P(k = 0,s)/1gk 2 where L-1 is the inverse Laplace
transform, that

t3 for 03 < 1/3;
(r 2(t)) t2+(3/2)(1-0) for 1/3 </3 < 5/3; (48)

t for /3 > 5/3.

For the case 13 < 1/3, we recover Richardson's law of turbulent diffusion. For
large enough 13 the mean square time spent in a flight segment becomes finite and
Brownian motion is achieved in accord with the Central Limit Theorem. If the
memory was decoupled, then the calculation of (r 2) would involve 02p(k = 0)/ak'
which is infinite. For the coupled space-time memory, one instead calculates with
f exp(ikr)Vk(slr)p(r)dr instead of p(k). This will turn the infinity of the Levy flight
into the temporal scaling of the Levy walk.

One advantage of this approach rs that one can visualize the types of random-
walk trajectories which can lead to turbulent motions. F. Hayot4 has actually im-
plemented the Levy Walk model to simulate turbulent pipe flow. Instead of the
parabolic velocity profile of laminar flow, a better mixed flow with a flatter velocity
profile is discovered. Comparing his calculated velocity profile with experimental ve-
locity profiles, he is able to associate a Reynolds number of about 10' with the flow.
Basically, the Levy Walk zeroth-order state is already turbulent for small enough
13, while the traditional lattice gas hydrodynamics is based on nearest-neighbor
collisions which corresponds to low Reynolds number flow. Enormous computing
power, or tricks, would be needed to reach a turbulent state in the standard lattice
gas hydrodynamic approach. Turbulence is natural for the Levy Walk approach.
Phase diffusion in Josephson junctions3, 13 and transport in stochastic webs17 are
other examples where Lcvy walks occur.
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5. BERNOULLI SCALING16

It is of interest that the history of probability theory has already provided us with
a beautiful example of the types of scaling discussed in this paper. The problem
involves a certain game of chance. The game is to flip a coin until a head appears.
This could take only one flip with probability of 1/2, or n flips (i.e., one gets n - I
tails in a row before a head appears) with probability 1/2'. Suppose you win 2"
coins if n - 1 tails appear before the head appears. Then your expected winnings are
1Lx /2±2 x 1/4+...+2"/2"+' +... = oo. This game was introduced by Nicolaas
Bernoulli (the nephew of Jacob and John) in the early 1700s. It is called the St.
Petersburg Paradox because Daniel Bernoulli wrote about it in the Commentary
of the St. Petersburg Academy. The question which was posed was how much ante
should be required to place the game. The player favors a small ante because he
will win only 1 coin with probability 1/2, 2 or less coins with probability 3/4, 4
or less coins with probability 7/8, etc. The banker, who must take on all comers,
favors an infinite ante because this is his expected loss. The two parties cannot come
to an agreement because they are trying to determine a characteristic scale from a
distribution which does not possess one. All scales enter and the probabilities for all
possible winnings add up to unity. However, an order of magnitude greater winnings
occurs with an order of rfimagnitude less probability. This example is the forerunner
of fractal time where the waiting times between jumps occur on all scale, but with
order of magnitude longer waits occurring an order of magnitude less often. The
fact that (t) was infinite for a fractal time process did not mean that the duration
between every event was infinite, just as in this coin game not every player wins
an infinite amount of money just because the expected winning is infinite. The
perception of this paradox in the 1700s was to cast aspersions on the ability of
probability to have a sound mathematical foundation. In the 20th century we see
this paradox as a rich example of scaling with all its inherent exponents, fractal
dimensions, renormalizations, and natural description of complex systems.
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Dynamics of Web Maps: Parameter
Dependence of Stochastic Layers

INTRODUCTION
Zaslavsky's web map' 0 "1 ",12 arises from the following idealized thought experiment.
A charged particle moves in the xy-plane perpendicular to a uniform magnetic
field. If undisturbed, it moves in a circle with uniform angular frequency Q, and
this imposes a linear relation between coordinate and velocity components:

i =N(y - Y:), (1)
y =- Q(x- X'), (2)

where (zx, y,) is the center of the circle. Now suppose the particle is subjected to
instantaneous kicks, q times per revolution, by an electric field

E=eyEosinkyY'6 t 2qrn. (3)
n

Since each kick leaves y and i unchanged, Eq. (1) is valid for all times, with yc a
constant of the motion, which we choose to be zero without loss of generality. The
appearance of a typical orbit is suggested irn Figure 1. We note that, with the aid of
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Eq. (1), the relationship between the velocity vectors just prior to successive kicks
can be expressed recursively, as an area-preserving mapping M (the web map) of
the velocity plane,

(U) Cos sin

M" -Cos- - ) v+asinu) (4)

where u = ki/Q, v = kjl/Q, and a is a dimensionless parameter proportional to
the kick amplitude.

Although the assumptions which went into the above model are unrealistic for
practical applications in plasma physics, it is of some theoretical interest whether
such a simple mechanism can lead to unbounded acceleration of particles. That
is, are there initial conditions under which repeated application of the map M
leads to ever increasing velocities? Or is there a dynamical obstacle that prevents
orbits from marching out to infinity in the uv-plane? Such an obstacle would be a
closed invariant curve surrounding the origin. Since the interior of such a curve is
mapped into itself by the area-preserving map M, no orbit initially inside can cross
to the outside. Because of their well-known role in the theorems 2'8 of Kolmogorov,
Arnold, and Moser, we shall frequently refer to simple, closed, invariant curves as
KAM curves.

The answer to our question is relatively simple in the cases q = 3, 4, or 6, where
the KAM curves are restricted to the interiors of cells which tile the plane peri-
odically, and there is an infinitely extended web of unbounded chaotic orbits. The

FIGURE 1 Motion of a periodically kicked charged particle in a uniform magnetic field.
Here kicks in the y direction occur four times per revolution. Note the constancy of the
y-component of the center of circular motion.
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cases q = 5, 7, 8, etc. are far more subtle. Once again, for sufficiently large a, there is
a web of chaotic orbits, this time with an apparent quasi-crystalline symmetry. Now
periodicity no longer limits the size of KAM curves, and in fact numerical studies3 7

show that in the a -- 0 limit there exist closed invariant curves of arbitrarily large
radius. Based on perturbative calculations' and numerical experiments, 1"1.11. 12

one expects an inexorable increase in the area occupied by chaotic orbits as the
parameter a increases, so that all the KAM curves are eventually swallowed up by
chaos. Beyond this broad picture, very little is known about the parameter evolution
of KAM curves and quasi-crystalline stochastic webs. In this lecture we report on a
small step toward gaining this understanding. WVe shall concentrate on a particular
piece of the five-fold web, and try to follow graphically the evolution of one of its
boundaries. We shall find that the behavior is a good deal more complicated than
one might have guessed from studies of simpler maps.1

BASIC CONCEPTS
Before discussing our numerical explorations, it is important to make more precise
some of the basic concepts. We restrict ourselves to the web map of Eq. (4) with
q=5.

SYMMETRIES

The geometry of typical orbits in the uv-plane (the so-called phase portradt) is char-
acterized by some important symmetries. First of all, there is an invariance under
the map M itself. which, for all points except those close to the origin, is approx-
imately a clockwise rotation by 21r/5. There are additional exact symmetries 69 of
M-invariant objects, namely mirror reflections about the axes inclined at polar an-
gles 37r/10 and 47r/5 (the product of the two reflections is just a total inversion).
Exploiting these mirror symmetries is crucial to the effectiveness of numerical meth-
ods applied to long orbits. 6

FIXED POINTS

There are infinitely many fixed points of the fifth-iterate map M' (this is the map,
rather than M itself, which marches in small steps and traces out the "shape" of an
invariant curve or stochastic layer), and they form an approximate quasi-crystalline
array in the uv-plane. Since the map preserves areas, there are only two types of
fixed points: stable (or elliptic) and unstable (or hyperbolic). The former are the
centers of small-scale circulation and are not of particular interest to the present
investigation. The hyperbolic fixed points, on the other hand, determine what we
mean by the "shape" of long invariant curves. Intersecting at each such fixed point
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are two special M 5 -invariant curves, its stable and unstable manifolds. Along the
stable manifold, an orbit moves toward the fixed point, with the steps decreasing
in size geometrically; along the unstable manifold, orbits move away from the fixed
point, with steps increasing in size geometrically. Typical orbits in the vicinity
of an unstable fixed point are "scattered" by it: they approach it along a stable
direction and leave along an unstable one. A long orbit will visit the neighborhoods
of many hyperbolic fixed points. Its shape will resemble a complicated polygon,
with a rounded corner wherever it passes near a hyperbolic fixed point (see Figure
3 for some simple examples).

STOCHASTIC LAYERS

In the special case of an integrable model, the unstable manifold of a hyperbolic
fixed point ends at another such point, forming part of a separatrix curve. On the
other hand, a generic perturbation of an integrable model leads to breakdown of
separatrices and their replacement by stochastic layers of nonzeru thickness within
which the hyperbolic fixed points are located. Almost all of the orbits within the
layer are chaotic, and if one assumes ergodicity within the layer (islands of stability
may be surrounded by the layer but are not considered part of it), one can define
the layer to be the closure-of any one of its chaotic orbits.

The web map is believed to be integrable only in the limit of vanishing a (the
first-order approximation to M' is a Hamiltonian flow). Hence we expect to find
stochastic layers associated with all the hyperbolic fixed points of the fifth-iterate
map.

STOCHASTIC WEBS AND KAM CURVES

Being embedded in a common stochastic layer is clearly a connectivity equivalence
relation for hyperbolic fixed points. The complete system of those connectivity
components which surround the origin resembles, in structure, a spider web (at
least if a is neither too large nor too small), and hence the name stochasthc web.
Our original questions concerning the-possible trapping of orbits can be rephrased as
follows: given a, does the stochastic web have a finite component? The alternative
is that there is a connected web extending throughout the plane. If there is a finite
component, then its outer boundary is a closed invariant curve C which traps all
orbits with initial point interior to C. Typically, there will be a narrow annular
region, between C and the web component surroundinýr C, within which quasi-
periodicity reigns (in the form of closed invariant curves interlaced with isl-ad
chains).

The relationship between hyperbolic fixed points, stochastic layers and webs.
and KAM-dominated annuli is sketched in Figure 2. From our previous remarks
about symmetries, it is obviously sufficient to restrict our attention to a sector of
angle 7r/5.
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FIGURE 2 Sketch shaing schematically two stochastic layers (shaded) which form
connected components of a stochastic web. KAM curves, interspersed with island
chains, are to be found in the annular region between the layers.

Ultimately we would like to know the connectivity structure of the stochastic
web as a function of a. In particular. what is the smallest value a0 such that for all
a > a0 , the web has only a single component? As we shall see below, we are only
beginning to make some headway toward answering such questions.

DETERMINATION OF STOCHASTIC LAYER BOUNDARIES
To investigate how stochastic layers evolve, it is cruci-l to have a reliable opera-
tional definition of the boundary of a stochastic layer. From its definition and the
assumption of restricted ergodicity, one might try choosing a "raadom" assortment
of initial conditions well within the layer and simply iterating away, thus defining
the boundary as the limiting envelope of the chaotic orbits explored in this fashion.
In many instances this can be misleading, due to the presence near the boundary of
cantori: invariant fractal sets which can block the convergence of the envelope to
the true boundary for unacceptably long times. More efficient is an approach from
the quasi-periodic side, thinking of the boundary as the "last KAM curve" beyond
which quasi-periodic orbits on closed curves are impossible.

A straightforward method of doing this has been given by Greene. 4'5 The main
idea is to concentrate on a dense set of "noble" KAM curves. For a quasi-periodic
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orbit on such a curve, the average numbers of revolutions about the origin per map
iteration (the rotation number) has a continued-fraction representation of the form

[mo, 17,m 2 .1, ... M.] -mo+ 1 (5)m1 + mn2 +... .

In the neighborhood of a noble KAM curve, one expects to find a sequence of stable
periodic orbits with rational rotation numbers in which the continued fraction rep-
resentation (5) is truncated at n levels. According to Greene, there is a quantity R,
the residue, whose scaling b(. ior as one proceeds down the sequence of approxi-
mating periodic orbits, gives a criterion for the existence of a KAM curve with the
given irrational rotation number. If the limiting curve exists, R decreases to zero at
a geometric rate; if the curve does not exist, the residue blows up geometrically. For
the borderline case, applicable to the "last KAM curve," R approaches a constant
close to 0.25.

Applying Greene's criterion requires an ability to locate long periodic orbits
rapidly and precisely. Fortunately the existence of a symmetry axis greatly enhances
our ability to make such calculations for the q = 5 web map.

EXPLORATION OF A SPECIFIC STOCHASTIC LAYER

We now turn to a computational exploration of a "typical" stochastic layer of the
q = 5 web map. What I shall describe here is a graphical depiction of the parametric
evolution of the selected layer. This is one of several approaches (including a direct
application of Greene's criterion) which I have used to investigate this particular
layer. The interested reader will find a detailed account in Lowenstein. 6

The map M' has a hyperbolic fixed point (u0 , vo) on the symmetry line near
the point (-65. 17) (its precise location depends on a, and is easily found by a one-
dimensional search along the symmetry line). For values of a between about 0.21 and
0.36, the fixed point is immersed in a web component, one-tenth of which is shown in
Figure 3(b). For at least part of the parameter range, this component is surrounded
by the larger one shown in Figure 3(c), and the two are separated by a thin annular
region. Figure 3(a) shows an orbit within the annulus. The relationships among
the two stochastic layers, their associated fixed points, the annulus, and the origin
are indicated schematically in Figure 2. Each of the pictures of Figure 3(a)-(c) is
a plot of a single orbit with an arbitrarily selected initial point on the symmetry
line. Although each of the orbits surrounds the origin, all points are mapped by
symmetry transformations into the same sector of opening angle 7r/5.

To study the detailed evolution of the stochastic layer, we focus on a small
neighborhood of the hyperbolic fixed point. This has the advantage of spreading
out the orbits along the symmetry line, and allows a natural definition of the layer's
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(a) (b) (c)

FIGURE 3 Plots of long orbits starting near the hyperbolic fixed point (uo, vo). Using
symmetries, points are plotted in a single sector with opening angle 360. The three
orbits are (a) in the annulus between stochastic layers (close to a KAM curve), (b) in
the inner stochastic layer (chaotic orbit), and (c) in the outer stochastic layer (chaotic
orbit).

width, namely the distance of the boundary from the fixed point, measured along
the symmetry line.

Figure 4 shows a sequence of twelve snapshots of representative orbits near the
stochastic layer boundary, for equally spaced parameter values between 0.3030 and
0.3041. The plots are generated as follows:

i. For each a, the hyperbolic fixed point (uO, v0) is found by a search along the
symmetry line. The field of view is set to be u0 - 0.06 < u < uo + 0.006,
v0 - 0.0054 < v < v0 + 0.054.

ii. Using the symmetry operations, we endow the angle r/5 sector straddling the
symmetry line with periodic boundary conditions.

iii. Preliminary graphical explorations indicate that the primary periodic orbits
(i.e., the minimal ones, corresponding to the largest island chains) near the
layer boundary have periods between 494 and 510 in the selected parameter
range. Note that these are periods for traversing the reentrant sector; the cor-
responding orbits circling the origin require approximately ten times as many
iterations of M.

iv. For primary period n, we locate periodic orbits with rotation numbers

[n,4. 1, 1, 1, 1] =n + ,

[n, 2,1, 1, 1, 1, 1] =n +

13In, 1, 1, 1, 1, 1, 1, 1] =n + y-,

In, 1, 3,1, 1,1,11] =n + 18•
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using a search on the symmetry axis. Outside the stochastic layer, according
to Greene's analysis, these orbits belong to island chains approximating KAM
curves. Within the layer they are almost certainly unstable.

v. Starting near each of the periodic points (10`3 off the symmetry axis), we
iterate M 5 15,000 times, plotting all those points which fall within the field of
view. The near-KAM orbits will appear as dashed curves (actually lines of very
narrow islands), while those well within the layer will soon show their chaotic
character. Just inside the layer boundary, the orbits will spend a great deal of
time near cantori, and the plot will show a fuzzy dashed curve.

A glance at a plot generated in this manner gives one a fairly good idea of the
location of the stochastic layer boundary. This is confirmed by comparison with the
more precise results obtained by systematic application of Greene's criterion.

What does our sequence of snapshots reveal about the parametric evolution of
the stochastic layer in question? The first three frames show no dramatic changes
in the stochastic layer, only an extremely gentle expansion. In Figure 4(d)-(f), a
remarkable increase of stability occurs deep within the layer. The orbits are chaotic,
but they spread out very little during the 15,000 iterations (this is particularly evi-
dent in Figure 4(f)). This is a prelude to the birth of a narrow channel of regularity
which is barely visible -in-Figure 4(g) but grows rapidly and moves upward while
the chaotic layer above it gradually dissolves. By the last frame we are more or less
back to where we were at the beginning of the sequence.

The more comprehensive exploration of Lowenstein 6 shows that the cycle de-
picted in Figure 4 is repeated many times, with a generally increasing amplitude,
as a increases from 0.30 to 0.36.

Perhaps the most interesting feature of Figure 4 is the discontinuous decrease,
between frames (f) and (g), in the width of the stochastic layer. Finer subdivision
of the interval6 reveals that the collapse is at least by a factor of 4. Additional
work will be needed to probe the details of the bifurcation which opens up an inner
channel between a = 0.3035 and a = 0.3036, as well as to find the dynamical origin
of the phenomenon.
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Non-Local Cellular Automata

Non-local cellular automata are fully discretized and uniform high-dimen-
sional dynamical systems with non-local interactions. It is emphasized that
although non-local interaction is not considered as a correct description of
the physical world at its lowest level, at higher levels, it nevertheless is
an important feature for systems in, for example, biology and economics.
Many properties of non-local cellular automata are investigated in another
publication.' In this lecture note, I will only highlight a few topics, including
the analytic approximation of macroscopic dynamics, systems of coupled
selectors, and group meeting problems.

FROM LOCAL TO NON-LOCAL DYNAMICAL SYSTEMS

One of the most important aspects of a complex system is its time evolution fol-
lowing a rule which does not change in time. A point of view, though perhaps
extreme, is that since all physical laws are fixed (for example, there is no evidence
that the gravitational force falls off as 1/r2 today-where r is the distance between
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two mass objects-but falls off as 1/r 3 tomorrow), whatever has happened on the
earth is a realization of a gigantic dynamical system with those fixed physical laws.
With this point of view, the evolution of life as well as natural selection can also be
modeled by complex dynamical systems with fixed rules, although this modeling
will be extremely difficult because the evolution of life is much more complex than
practically all model dynamical systems that we have known.

Since physical laws are local (there is no experimental evidence that physical
interaction can be accomplished nonlocally), one may argue that we only need
locally coupled high-dimensional dynamical systems to model everything. In other
words, there is no need to introduce nonlocality in the model dynamical system.

However, in a more realistic modeling of the world around us, we do not come
down to the very end of the microscopic description. The entities that interact with
each other are not quarks, nucleus, atoms, or molecules, but things like neurons in
a brain, animals in an ecological system, or agents in a stock market. As the level
of description increases, two notions have been changed. First, the dynamics rule
may not be fixed in time (they are not the golden, universal, time-invariant physical
laws any more). Second, the interaction between entities may not be local.

If the dynamical rule is not time-invariant, it can be very hard to describe
and to study the resulting dynamical system, unless the dynamics of the rule is
describable. In other words, we need two sets of dynamical systems: at the higher
level, there is a dynamics of the rules, and at the lower level, there is a dynamics of
the entities. Many evolutionary models are of such nature. The complexity of the
system results from the interplay between higher-level and lower-level dynamics.
One can even imagine three or more levels of dynamics, in which the entity of the
higher level is the rule of the level one step lower.

These multi-level dynamical systems are fascinating systems to study. But they
are outside the realm of this lecture note. For the time being, to start from the sim-
plest scenario, I will assume that the lower-level rules are not changed. An expla-
nation for this assumption is that the higher-level rules function on a much longer
time scale, so that during this time scale, the lower-level rules can be considered as
unchanged.

The issue I want to address here is the following: what happens when the non-
locality is introduced to a dynamica1 system? One should know that the locality of
interaction is a terrible assumption for many systems with a high-level description.
For example, the transmission of signal from one neuron to another in the brain
is through axons and dendrites. The distance between two neurons is an irrelevant
piece of information concerning whether or not the two are connected to each other.

Note that the nonlocality at this level of the description (interaction between
neurons) does not contradict the locality at the microscopic level: the traveling
chemical signals do obey local physical and chemical laws. This fact, however, does
not prevent us from explicitly incorporating the nonlocality into the modeling pro-
cess when describing the interaction between neurons.

Similarly, two agents or brokers in a stock market can communicate via tele-
phone line regardless of how far or close the two are to each other. Again, there is no
contradiction with the locality of the physical laws. Admittedly, the electrical signal
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does take a longer time to travel for a longer telephone line than a short one, but the
difference is so small compared with the time scale of the stock market activities,
that this fact is irrelevant. The more important information is who makes phone
calls to whom (whether the connectivity is one or zero) than the actual distance
between them.

There are many, many other examples. What we have learned from this discus-
sion is that when the level of description of a system is increased, one sometimes
needs to explicitly introduce nonlocality to the modeling. This nonlocality does not
violate the locality at the lowest level description-the physical description.

CELLULAR AUTOMATA AS A FULLY DISCRETIZED AND
UNIFORM HIGH-DIMENSIONAL DYNAMICAL SYSTEM

What is a cellular automaton? With so many introductory articles and books exist-
ing on this topic, I will refer the reader to the original publications (e.g., Toffoli and
Margolus,12 and Wolfram15' 16 ). To put it into simple terms, one can say that cel-
lular automata are high-dimensional, fully discretized, synchronous, uniform, and
locally coupled dynamica-1ystems. There are high-dimensional dynamical systems
that are not fully discretized, such as partial differential equations, coupled differ-
ential equations, and lattice maps (e.g., Crutchfield and Kaneko 2). There are also
high-dimensional, fully discretized dynamical systems that are not synchronous or
uniform. The model systems I will introduce are high-dimensional, fully discretized,

synchronous, and uniform dynamical systems with nonlocal connections.7

There exist other names that can describe nonlocally coupled, high-dimensional
dynamical systems; for example, automata networks, or simply, networks. I will use
the name "nonlocal cellular automata" to have a closer reference to the locally cou-
pled cellular automata, in order to emphasize the uniformity and synchronousness
of the system.

Suppose the state value of the component i at time t is xf, and the total number
of components in the system is N, then the state configuration of the system consists
of state value for each component: (z¶, 4,... ZN). An n-input nonlocal cellular
automaton is defined by the rule f(.):

X!+I-1 =' f (X t

I 3(x3(), z 2(3 ,'"Z(,()' (1)

which says that each component i updates its state value by checking the state
values of n other components, which have indexes j1(i),j 2(i),... ,j,(i). Knowing
the state values of these components, and knowing the rule f(.) which is written as
a rule table (a list of all possible n-component configurations as well as which state
value they lead to), we are able to determine what the state value of the component
i is at the next time step (z+1).
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There are other types of networks previously studied. One of them, studied
by Walker and Ashby, might be called "Ashby nets,"'13' 14 is also uniform and syn-
chronous, but not all inputs are randomly chosen-one input is always the compo-
nent itself. More about Ashby nets will be discussed in the next section.

Another type of nets, that might be called the "Kauffman nets," is studied
in Kauffman. 9"° These nets are synchronous, but not uniform: the rule acting on
one component may differ from that on another component. It is well known that
different rules can lead to different dynamical behaviors, so mixing all of them
into one system leads to rather poor statistics. If the number of inputs (n) and
the number of components (N) are fixed, and we ask the question of what the
"typical" transient and cycle times are, there will be no "good" answer. The median
value (see, for example, Press et al." for a definition of the median as well as the
mean value) of a wide-spreading distribution of these statistical quantities, as used
in Kauffman, 9 may not give a true "typical" value. Numerical results show that
median cycle lengths for these nets are quite different from the mean cycle lengths,
though I will not include these results nor discuss this type of net further here.

WIRING DIAGRAM

Besides the dynamical rule, the wiring diagram of a network also plays an important
role in determining the dynamics. It could happen that with the same rule, some
wiring diagrams lead to one type of dynamics, while other wiring diagrams lead to
another. When we talk about dynamics of a nonlocal cellular automaton rule, there
is an implication that almost all wiring diagrams ("typical" or randomly chosen)
lead to the same dynamics.

It is in an analogous situation to local cellular automata. For local cellular
automata, we also talk freely about the dynamics of a rule, without specifically
mentioning the initial configuration. It is again implied that almost all typical or
randomly chosen initial configurations lead to the same dynamics. This idea is
essential to the concept of "attractor"; that is, whatever the initial conditions, they
are all attracted to the same limiting behavior.

The wiring diagram dictates where to take inputs for each component. In some
sense, it determines the direction of information flows. Obviously, wiring diagrams
with different topological structures will transmit information in different ways, and
dynamical behaviors can also be different.

For example, if one assumes that for each component i, one of its inputs is
always itself:

for all i's ji(i) = i, but other jk(i)'s are random (k = 2,3,... n,), (2)

then the wiring diagram will not be completely random. I called this type of wiring
diagram partially local or partially nonlocal.7
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Some nonlocal cellular automata with partially local wiring diagrams were stud-
ied in Walker and Ashby.13,1 4 These are 3-input, 2-state, nonlocal cellular automata
with the second input being the component itself

for all i's, j 2 (i) = i, but j1 (i) and j 3(i) are random. (3)

It has been shown that for many 3-input, 2-state rules, fully nonlocal wiring dia-
grams and partially local wiring diagrams lead to different dynamics. 7

Another issue related to the wiring diagram is the discussion on how dynam-
ics are affected by changing the number of inputs. It is numerically shown that
the number of inputs is important to determine the dynamical behavior.6 If one
randomly picks a rule, the more inputs one has, the more likely the dynamics are
chaotic. For local cellular automata, the increase of the number of inputs will in-
crease the percentage of rules that are chaotic. More detailed discussions are in Li,
Packard, and Langton. 6

Now back to the discussion of nonlocal cellular automata. Even though each
component is supposed to receive n inputs, a particular realization of the random
number generator may actually assign two inputs to be the same. If this happens,
the rule as applied to that particular component will have one less number of input
than it should have. And if many other components also have this degeneracy of
inputs, it is more likely that the resulting dynamics acts as if the number of inputs is
smaller. Some specific examples of the difference between the degeneracy-permitted
and distinct-input diagrams are presented in Li.7

ANALYTIC APPROXIMATION OF MACROSCOPIC DYNAMICS
The ultimate method to study a dynamical system is to run the time evolution
following the rule that updates the state value for each component. The simulation
for 3-input, 2-state, nonlocal cellular automata has been carried out and the results
are summarized in Li.'

If one is only interested in dyna~nics of macroscopic quantities, for example,
the density of state 1, some alternative dynamical equations for that macroscopic
quantity can be derived. These dynamical equations for macroscopic quantities are
not equivalent to the original dynamics rules, but they will, in many cases, provide
valuable information to the original dynamics.

The dynamical equation for the density of state 1 can be called return map:

dt +1 = F(d t ) (4)

where dt is the density of state 1 at time t, and the F(.) is determined either
by actually running the rule f(.) or by some approximation schemes. Note that
different original rules f(.)'s can give the same macroscopic dynamics F(.).
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One approximation scheme called mean-field theory assumes that all inputs are
independent of each other, and the probability for having state 1 when the n inputs
contain m state 1 and n - m state 0 is estimated by counting the percentage of
input configurations (containing m state 1 and n - m state 0) that are mapped to
state 1. For a general introduction, see Gutowitz. 4

To illustrate this approximation scheme, let me use the following rule as an
example (the triplet is the value of the three inputs, and the number below the
triplet is the value to be updated to):

111 110 101 100 011 010 001 000 (5)
1 0 1 1 1 0 0 0

When all three inputs are 1, the state value will be 1; when two inputs are 1 and
one input is 0, two out of three configurations will be mapped to 1; when one input
is 1 and two inputs are 0, one out of three configurations will be mapped to 1; and
when all three inputs are 0, the state w.•ue will never be 1. It is easy to show that
one can approximate the return map by

dt+1 _- (d t)3 + 2(d') 2(1 - dt ) + dt(1 - d') 2 . (6)

Simple manipulation shows that it leads to

d -+1 = dt ; (7)

that is, the density of state 1 does not change with time.
In fact, some important information can be extracted from this approximation

of return maps. If the return map has a stable fixed-point solution equal to zero,
the limiting density of state 1 should be zero or very low. That is the case when the
original system has a fixed-point dynamics with zero-density or low-density spatial
configurations.

If the return map has a non-zero, stable, fixed-point solution, there are two
possibilities for the original dynamics: (1) the original system has a fixed-point
dynamics with a spatial configuration about half filled with Os and half with is,
and (2) the original system is chaotic, with some kind of "thermal equilibrium
states" being reached. Even though the state value for each component changes
constantly, the density of is is nevertheless a constant.

I have yet to discover a return map with chaotic solutions. Generally speaking,
it is very difficult for macroscopic quantities to fluctuate chaotically. Occasionally,
numerical simulation shows that macroscopic quantities such as the density of state
1 do fluctuate irregularly. Nevertheless, it is always because these simulations are
carried out for systems with finite sizes. The magnitude of these irregular fluctuation
decreases as the system becomes larger. And, in principle, they will disappear in
the infinite size limit. See, however, the discussions in Bohr et al.1 and Kaneko.'

Although the return map is not equivalent to the original dynamical rule, it
can provide valuable information. Because of the low dimensionality of the return
maps, it is easier to study its own "bifurcation" phenomena (how dynamics of
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the return maps change with the parameter). From these studies, one can then
understand some aspects of the bifurcation phenomena in the original system. A
study of nonlocal cellular automata rule space following this strategy is carried out
in Li.7 In particular, it is partially understood why some bits in the rule table,
which are called -'hot bits" in Li and Packard,5 are more important than others. It
is because the hot bits change the form of the return map more drastically than
other bits.7

SYSTEMS OF COUPLED SELECTORS
The cellular automaton rule defined in Eq. 5 can be written in another form:

Xý If X,
t ~ l j l( i ) x j ý ( o )

"Xi = f 1  if X, (8)
J 3 (i) j2(i ) 0 1.

In other words, if the second input is in state 0, the rule transmits the state value
from the first input; if the. second input is in state 1, the rule transmits the value
from the third input. This rule can be called a selector, or a multiplexer, with the
second input called a control input; that is, it decides which input to select.

This rule turns out to be the most intriguing 3-input 2-state nonlocal cellular
automata. A typical spatial-temporal pattern for this rule is shown in Figure 1.
Although the limiting dynamics is periodic, the transient dynamics looks chaotic.
This combination of long chaotic transients and simple limiting dynamics is typical
for systems on the "edge of chaos."

From Figure 1, we can see some dark and light horizontal stripes. In order
for the dark stripe to form, if one component ha. state 1, other components also
tend to have state 1 so that the total number of components with state 1 is in-
creased. This seemingly simple fact implies the existencc of certain cooperation
among components. Indeed, other components do not have reasons to follow suit
when one component switches from-0 to 1, unless they are dragged into doing so.
The emergence of higher level structures is also a hallmark of the edge-of-chaos
systems.

The transient time for systems of coupled selectors is observed to increase with
the size of the system. More careful simulation shows that the increase i., almost
linear:

T.,(N) ... N (9)

where Ta,(N) is the mean transient time for systems with size N. If we exclude all
degeneracies in choosing inputs, it has been observed that the increase of transient
time is more than linear7 :

Ta.(N) N1 2 (10)
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ime T + I -I2T

time 0 - T

FIGURE 1 A spatial-temporal pattern of the coupled selectors. The configuration of
the system (horizontal string) consists either 1 (black) or 0 (white). And the updating of
the configuration is represented by showing the configuration at each time step (time is
increased going down).

There are many open issues concerning the transient behavior and I will not
discuss them in length here. Briefly, there are questions on how large the system
size should be in order to trust the scaling; what the distribution of transient times
is for a fixed size; whether this distribution with respect to wiring sampling is
different from that of initial configuration sampling; whether the mean transient
time is a better quantity than the median transient time, and whether one should
take the logarithm first, then do the average; how the permission of degenerate
inputs change the result; and so on.

In Figure 1, the limiting configuration has a very low density of state 1. If we
change the wiring and initial condition, and run the simulation again, it is pussible
that the limiting configuration can have a very high instead of a very low density
of state 1. These two types of configurations are called consensus states. It is not
clear before finishing the simulation which consensus state will be reached. In fact,
it has been observed that the density could wander up and down in such a way that
the system almost hits the high-density consensus state before turning the trend to
eventually reach the low-density one!

GROUP MEETING PROBLEMS
Imagine a group of people having a meeting. The goal of the .neeting is to find a
consensus opinion: either most of the people vote yes, or most of them vote no. Re-
quiring a 100 percent yes-vote or no-vote may not be realistic, so some compromise
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is made: we allow the meeting to finish whenever the density of yes or no is higher
or lower than a certain threshold value.

The system of coupled selectors discussed in the last section can be recast into
a group meeting problem. At the beginning of the meeting, each person votes yes
or no randomly. Then each person chooses three other persons (he can also choose
himself) as his or her 'inputs." Each one of the three inputs is labeled as either the
first, the second, or the third input. The second person is most important: whenever
he or she votes no. the first person's vote will be followed: and whenever he or she
votes yes, the third person's vote is followed.

This somehow bizarre way for a group meeting to proceed is, nevertheless, not
as trivial as one might have thought. First of all, will the group meeting ever reach
a consensus'? By the result presented in the last section, the answer is yes. But
this is true only when the three inputs are random chosen. There are examples
where a consensus is never reached. For example. if the wiring is partially local,
i.e., j 2 (i) i. it is almost, always the case that the dynamics is chaotic and the
density of state I is around 0.5.'

Second, even if a consensus is reached, do we know which one?
For the system of coupled selectors, we do not know beforehand whether it is

an all-yes or all-no state that is reached. Both low- and high-density configurations
are "traps" or "attractors" of the dynamics. If we consider the fluctuation of the
density as a random walk (though it is a deterministic random walk because initial
configuration, wiring diagram, and dynamical rule are fixed during the updating), it
has a 50-50 chance to reach either the low-density or the high-density configuration.

The system of coupled selectors is not the only system to have two consensus
states. Actually, there exists a large class of "unbiased" rules that behave similarly
(by "'unbiased," I mean that the rule does not have any reason to prefer either one
of the consensus states). Interestingly, one such rule. a 7-input 2-state local cellular
automaton, called Gacs-Kurdyumov-Levin rule, was proposed more than ten years
ago,' defined as the following:

(+I majority among x, , XZi_, andx'_3 if (11)
1" = majority among xi, , and x+ 3  i = 1

It has been shown that Gacs-Kurdvumov-Levin rule (11) has two attractors:
all-zero and all-one configurations. The all-zero consensus state will be reached if
the initial density of state 1 is smaller than 0.5; and the all-one consensus state
will be reached if the initial density is larger than 0.5 (this result is proved for
Gacs-Kurdyumov-Levin rule (11) in the infinite size limit).

Similar to the systems of coupled selectors, consensus states may not be reached
for Gacs-Kurdyumov-Levin rule if the wiring diagram is modified. For example, if
the majority is chosen among x4, , ad when x =0, and among xf, x!

and x+2t when xt = 1, then the limiting density will be more or less the same with
the initial density. So, if the initial configuration is random, the limiting density will
be around 0.5 instead of 0 or 1. We can see easily that the Gacs-Kurdyumov-Levin
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rule can also be translated to a group meeting problem. If the periodic boundary
condition is used, we are going to have a "roundtable group meeting"!

With limited space and time, I can only introduce a few topics on nonlocal
cellular automata. There are other major topics that are not covered here, for
example, viewing nonlocal cellular automata as computers, and the structure of
nonlocal cellular automata rule space. For interested readers, see my paper for more
details.' I hope I have conveyed to readers the richness of dynamical behaviors for
dynamical systems with nonlocal interaction, and I hope more people will share my
excitement in studying these systems.
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Reality Kisses the Neck of Speculation:
A Report From the NKC Workgroup

During the 1991 Complex Systems Summer School. Stuart Kauffman lec-
tured on the family of NKC models. We found these ideas intriguing and
formed an NKC study group. This contribution to the lecture volume sum-
marizes some of the ideas and musings of this group.

It has been suggested2 6 that NKC is an acronym for "no known content."
Whether or not this is the case, NKC models are (also) named for the
three important parameters of the discrete fitness landscape models that
are discussed in this paper.

This summary has three distincl parts. The first is a mathematically formal
description of NKC models. The second is a list of critiques of current uses
of NKC models. The third section suggests several new areas that NKC
models may be useful. Space is limited so we will have to ask our readers
to see other authors' treatments of the basic NKC model. 9 ,10°11'12,13,1 6 ,2 4 25

1991 Lectures in Complex Systems, SFI Studies in the Sciences of Complexity,
Lect. Vol. IV, Eds. L. Nadel & D. Stein, Addison-Wesley, 1992 331
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1. A MATHEMATICAL FORMALISM
The formalism presented below is an attempt to add rigor to the NKC model. It
does this in two ways: First, by introducing a mathematical formalism that can be
used to find analytical results, and second, by specifying the model to a degree which
allows for more specific critiques of the underlying assumptions. This formalism is
based on our reading of the model as presented by Stuart Kauffman.9' 13 We believe
that this is the first formalization of this kind, though several other approaches
exist. 16,24,25

In the description of the formalism, we will be applying the NKC model to
genotypes. This allows us to use a familiar vocabulary. It is important to remind
you that there is nothing inherent in this formalism that restricts us to this level
of biological organization. It will also be immediately obvious that we are using
caricature genotypes. They are simply binary strings; we will have more to say on
the relationship between binary strings and biological genes in the second section
of the paper.

One of the goals of this formalization is to derive analytical results for the NK
family of models. Another is to formalize the operators that define the neighborhood
of a given gene: one-mutant neighbor, inversion, and crossing over. These operators
are defined below.

1.1 DEFINITIONS

Let N be a positive integer and K be a non-negative integer. N denotes the number
of genes in the genotype of an organism (see Figure 1), and K denotes the number
of other genes (see Figure 2) which depend on the fitness contribution (which will
be specified later) of each gene, where 0 < K < N - 1. Thus, K measures the
richness of epistatic interactions among genes. XN = {0, 11}v corresponds to the
configuration space of the genotype with N genes and XK+i = {0, 1 }K+1 is the
collection of the K + 1 genes on which the fitness contribution of each gene bears.

In a coevolutionary system, a positive integer S denotes the number of species
(see Figure 3). Here we are using the binary string to represent the genes in a
species, not the bases in a gene or amino acids in a protein. The genotype of
each species is represented as a binary string, where each element stands for a gene.

1 2 3 ... ... N

1 0 1 1 - I ... I 0

FIGURE 1 An example of a genotype (binary string) of length N.
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FIGURE 2 An example of several epistatic interactions; here K= 4.

a gene in the
i -th species - -,. S

- Si
the i -th species

oneofthe
connections, C -

FIGURE 3 A coevolutionary system, where positive integer S denotes the number of
species.

However, the model could be used at those levels. Often it is easier to visualize
the relations if we think of the binary strings as analogous to DNA sequences.
But Kauffman and Johnson's coevolution model describes the genes as being the
elements of the binary string.' 3 If this seems confusing, this arises from the fact
that their descriptions move easily between different levels of organization. This
shift may be unfortunate, but it illustrates the power of this model at different
levels of organization. Remember that instead of species we could think of these as
being chromosomes interacting or different genes on a chromosome interacting.

Each gene in the ith species depends on K genes internally and on C genes in
each of the Si(E {1,. . ., S}) species, S is the total number of species. Si is a subset
of S and represents all other species with which species i interacts. That is to say,
a positive integer C is the number of other genes in other species which depend
on the fitness contribution of each gene and Si is the number of other species with
which the ith species interacts. Let XCxS, = {0, 1}cxs, denote the configuration
space of the C genes in other species on which the fitness contribution of each gene
bears.
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We now introduce random variables to describe the elements of these interacting
binary strings.

For each j E {1,... S}, i7()(E XN) is the genotype of the ith species with Nj
genes, i.e.,

)7(j) = 0(jl')(1), lJ)W(2),...,?(J(N)) E X with ;7(j)(i) = to, 1).

We illustrate this in Figure 4.
In order to describe the interactions between elements of the string (i.e., inter-

action between genes within a chromosome), we define:

A•')(K) = { zi) )

with i4j) =i and i(j) t i(j) if r$ S.

Here A•j)(K) denotes the collection of indices which affect the fitness contri-
butions of the ith gene in the jth species. And

(10) (1): 1 Aý-) (K)) = (77(g))..O0(•) 0 XK

is the configuration which bears on the fitness contributions of the ith gene in the
jth species (see Figure 5).

Similarly

A& )(C) = IUs=s,,...S. .f1,s, 2,S' 3,s, , f

and (j)(1): 1 E A(j)(C)) = (77(')(4j)), 17(i)), Y7. , (i?)) E Xc

77 Ili ** [

"_"_ _FIGURE 4 This diagram

~__t ***depicts several binary77(s)= 771 ... 77N strings. Each of these strings
represents a genotype.
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/o=3 i3 =6

i= i2=4 i4=7

FIGURE 5 Ai((K) = A3 (4) {i0 = 3, il = 1, i 2 = 4, i 3 - 6, i 4 = 7}.

Where N = 7 and K 4, we would then write this as:

77(j),A3(4) = (77(j)(1), TO ) (3), Y(j) (4), q(j) (6), 7(j) (7))"

1.1.1 THE OPERATORS There are several operators that define which strings are
accessible from a given -string. These define the neighborhood of a given string.
These operators are named "mutation," "crossover," and "inversion." These terms
take their inspiration from looking at the NK model as describing DNA. This is a
different organizational level from the one we have been using above.

New variations in the genotype can be introduced by mutation, crossing over,
and inversion. These operations define searchable neighborhoods.

1. One-mutant neighbor operator:

G•):Nj - Nj, where m E {1,...,Nj}

is defined by a change in state of the individual gene (0 - I or 1 - 0) within
the genotype. If i j m (there is no change in the state of the gene),

=

if i = m (invert the state of the mth gene),

172)(i) = I - 772)(i).

Note that operation simply flips the bit position m.
2. Crossover operator:

G j-1j): (XN,, x XN,,) - XN,

a• J)(7j) , r77 ') (1700'(1),..., Y7(j)(a), Y7(jl)(a + 1), .. , j2)(Nj ))
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The other product of this crossing over is:

The point that the two genes are broken is a and we get two new genotypes by
rejoining the substrings. In our description of binary strings as being genotypes
belonging to different species it is not obvious how the crossing-over operator
would be relevant. But as mentioned above the NKC model has different levels
of applicability. In this case thinking of the binary strings as being analogs for
bases in a gene on a chromosome would be more helpful.

3. Inversion operator:

G[," Nj -- Nj wherea <band a,bE {11 .. Vj

is defined by:

G(•(•j )=(J(1) ••() ,•() ()a+ 1)],
[a, b] (17(', (7(j,1

77(J)(b + 1), .. , 77(i)(Nj )).

When a = b, then the inversion operators reduces to the identity operator. This
operator is applied to a single string. Breaking and rejoining occurs immediately
after the point a and b and the string of genes between points a and b gets
inverted.

Furthermore, we can define the following subspaces of X corresponding to the
above-mentioned operators.

1. One-mutant neighbor space:

XmU(77(i) = {Ga)( (Y)): m E {1,....,.}

2. Crossover space:

x U) 2)= {G(i1,i2 )(i7(1), 17(j2)):j$ j, 1  1,..Nj

3. Inversion space:

7 i) [a=b] (j j)):a < b,a, bE {1, .,Nj}}
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1.1.2 FITNESS The fitness contribution of the ith and jth genome (species) is a
combination of all of the interaction internal to the genotype j and the interactions
with genotypes of each of the other species, S3 . The fitness function assigns a value
of fitness contribution to each state of the set of genes that znfluence a given gene.
This may become a little convoluted so we have included some specific examples
below.

We now define the fitness contribution of the ith gene and jth species:

Wi(T1)) = -+ - {,W "i (77'): A (K)) + • 4/i Ai ')(C))} (1.1)
1=1

This is a combination of fitness contributions from internal interactions (as a func-
tion of K) and interspecies interactions (as a function of C). Where

wi 7() ,)U) = wi((,l) (p): p EA ,)

Cf/ (77(')): A,ý')(C)) = W'V (1i(')(q): q E ')(C))

and

W= /=().AJ' K) i N )()1'.... ,S
(?7(j)(p):p E _'j(K)) E XK+,

I(7(1)(q):q E Al')(C)) E Xc

1Z is the collection of (0,1)-valued random variables. In general, the cardinality
of 1?, IZ1, is a very large number. Commonly, for the sake of simple analysis, we
may assume that 7Z is the set of independent, identically distributed (IID) random
variables.

The fitness of the jth species is defined as the average fitness contribution of
each gene:

W(77>) N W,(77(). (1.2)

i=1

Hereafter, the above-mentioned NK family model will be called the M =
(N, K, C, S, Si) model. Sometimes it is called the NKC model for short.

1.2 EXAMPLES OF THE M = (N, K, C, S, S1 ) MODEL

This section gives some examples of the NK family of models. We do this to help
the reader tether some of the formalism to more concrete situations.
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1.2.1 THE BASIC NK MODEL: M(N, K, 0, 1,0) . In this model, the number of species
is one, so we will omit the superscript (j) so that:

r7 = 17(j), Wi(r,) = wi(,7(j)),

and so on.
By definitions (1.1) and (1.2), we have

1N

w( N) = N W (Y:(i:s(K)). (1.3)
i=1

Furthermore, it is easily obtained that for m = 1,..., N:

W(17.)- W(77) = N 1 {Wi(77.: AŽ(K)) - W (17:A 1(K))}" (1.4)
i:mEA,(K)

Next, we will consider this model in more detail.

CASE A: K = 0 Equations (1.3) and (1.4) imply that for m = 1,...,N,

1 N
W(77) = NE Wi(r7(i)) ' (1.5)

i=l

W(Wm)- W(7)) -{Wm (1 - r7(m)) - Wm(77(m))} (1.6)

where Wi( 7(i)) = Wi(( 7(i)))

TABLE 1 In this table we calculate all of the fitnesses for all of the possible

strings for the case where N = 3, K = 0, C = 0, S = 1, and Si = 0.

,7 w7 W2 W3 w,

000 Wl(0) W2 (0) W3 (0) ½{W 1(0) + W2 (0) + W 3 (0)}
001 W1(0) W2(0) W3 (1) A{W 1 (0) + W2 (0) + W3 (1)}
010 Wi(0) W2(1) W3 (0) ½{WI(0) + W 2(1) + W3 (0)}

011 W1 (0) W2 0() W3 (1) L{W 1((0) + W20(1) + W()
100 W1(1) W2(0) W3 (0) L{W1(1) + W2 (0) + W3 (0)}
101 W1(1) W2 (0) W3 (1) ½{W'W(1) + W2(0) + W3 (1)}
110 W1(1) W2(1) W3(0) ILfWW(1) + W2(1) + W3(0)1

111 W(10) W201) W3(1) 'IfW1 (I) +{ W2(1) +} W3(1))
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For example, if N = 3, K = 0, m = 2.

rY= (0,0,0) and 2 = (0, 1,0),

then

W((0, 1,0)) - W((0,0.0)) = .{W 2(1) - W 2 (0)}. (1.7)

For more details refer to Table 1.

CASE B: K = N - I Similary, for m =1 ..... V we have

W( 77) = + V W, (17(i)) (1.8)

WOW - W(77) = NZ Wi(77m) - W,()}, (1.9)

where
Wi(77) = W 2(i 7: AiU(N - 1)).

For example, if N = 3, K = 2, m = 2, = (0, 0, 0), and72' = (0, 1, 0), then

1 3

W((O, 1,0)) - W((O0, 0,)) = -j Z{W,((0 1,0)) - Wi((0, 0' 0))}. (.10)
j=1

In general, see Table 2.

TABLE 2 In this table we calculate some of the fitnesses for all of the possible strings for
the case:N =3,K = N- I,C=0,S= 1, and Si =0.

7 w W2 W3 W7

000 W1(o,0,o) W2 (0,0,0) W2 (0,0,0) ½{W1(0,0,0)+w2(0,0,0)+W 3 (0,0.0)}
001 WM(0,O,1) W2(0,0,1) W2(0,0,1) l{W1 (0,o, 1) + W2 (0,0, 1) + W3 (0.0, 1)}

11WI(1,1,1) W2(1,1,1) W2(1,1,1) ½{fW1 (1, 1, 1) + W2 (1, 1, 1) + W3 (1, 1, 0)}
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CASE C: 0 < K < N - 1 (THE GENERAL CASE) This case is more complicated than
the previous K = 0 and K = N - 1 cases. For example, assume that

Ai(h) = {i = I,-,i i + r}

with I > 0, r > 0 and I + r = K, and we adopt periodic boundary condition. Then
for m = 1,.... N, we obtain

1 N+1

W7 = N (1
i=N-r

W~q. - Wq) = N+1I1.2

For example, if N = 5, K 2,(1 = r = 1),m = 2, q = (0,0,0,0), and r75
(0, 0, 0, 1), then

1
W(775) - W(7) =[{W4((0,0, 1)) - W 4 ((0, 0, 0))}

+ I {WS((0, 1,0)) - W5((0, 0, 0))} (1.13)

+ {W I((1, 0,0)) - Wl((0,0,O))}

In the above cases, Ai(K) is chosen deterministically. In particular, if K =

2r(I = r), then AI(K) is a symmetrically chosen epistatic set.
On the other hand. we can consider the case:

Ai(K) = Ai(K)\{i}(= {il,...,ik})
A~i(U) = {1,.. .,}\i,

where A\B = {x: z E A f Bc} for sets A and B. That is the set of points that
belong to A but not to B. (This is sometimes called the difference.)

In this case, &i(K) is a randomly chosen epistatic set, i.e., there is a random
variable Y such that

P[Y = A,(K)] = PA.(K) Ž0 and Ph.(K) = 1.

(n(1):1EA,(K))EXK

Notice that the random cases of K = 0 and K = N - 1 coincide with deterministic
ones.

We hope that this formalism and our examples using it will clarify some of
the descriptions of NK and NKC models. This formalism has already been used to
achieve some analytical results.14
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2. COMMENTS ON NKC MODELS
The comments in this section are a mixture of two forms. Some of our comments
suggest areas where the NK/NKC models seem to diverge from the systems they
intend to model so much that the model should be altered; others explore some of
the details of the model structure.

As a backdrop for these comments, it is useful to review some of the stated12

goals of NK models. Kauffman and Weinberger listed the following issues:

1. How many local optima exist in a landscape?
2. What is the distribution of optima in the landscape? Are they near one another

in special subregions of the space or randomly scattered?
3. What are the lengths of uphill walks to local optima?
4. As an optimum is approached, the fraction of fitter neighbors must dwindle to

0. How rapidly does the fraction of fitter mutants dwindle?
5. Because the fraction of neighbors which are fitter dwindles to 0, there is some

characteristic relation between the number of mutations "tried" and the number
"accepted" on an adaptive walk. How are the two related?

6. How many alternative optima are accessible from a given starting point? Can
a "low-fit" peptide typically climb to all possible local optima, or only a small
fraction of those optima? Among the accessible alternative optima, how often
will each be "hit" on independent adaptive walks from the same starting point?

7. How many of the possible peptides can climb to any specific optimum, including
the global optimum? A small fraction? Almost all?

8. Since most adaptive walks end on local optima, what are the fitnesses of such
optima and how do they compare with the global optimum in the space?

9. The one-mutant variants of a local optimum must be less fit than the optimum.
But do all of the variants lead to nearly the same loss of fitness or is there high
variance indicating precipitous cliffs and gentle ridges in different directions in
the high-dimensional space?

This list indicates some of the initial goals. Each one of them is an opportunity
to question the underlying assumptions. We offer some of those questions below.

2.1 SWARMS IN STATE SPACE

It should be clear that populations never settle down to the kind of equilibrium
that allows them to be fairly represented as a single point in a high-dimensional
binary state space. Each point in the space is a string of length D, the dimension of
the space. Rather a population is really a swarm across this lattice, and the swarm
is localized in part of the space with a hamming distance radius less than some
e. (The hamming distance is a measure that counts the number of non-identical
bits in two binary strings.) This approach allows us to imagine the bifurcation of a
swarm and even imagine a population space interaction that excludes some strings.
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There might be lethal strings that also lie within e and divide the space. We should
like to see future modeling of NKC models grapple with this.

The NKC model, in effect, assumes that the population sizes do not change
(they are monotypic and genes get fixed after each mutation). A more realistic
assumption would be that populations change as a monotonic function of fitness.
The importance of a particular species to the fitness of another species (through C
linking genes) should be related to the population of that species. Thus, if a frog's
sticky tongue at time t drives flies to near extinctions at time t + 1, that sticky
tongue contributes less to the frog's fitness at t + I than at t.

It is important that these population dynamics be incorporated into the model
because it deals with populations whose fitness, and therefore sizes, would be fluc-
tuating dramatically, and the resulting dynamics would affect whether and what
types of equilibrium arise. It is exactly this long-term behavior that Kauffman is
interested in (e.g., "frozen state" vs. "near frozen" vs. "liquid state").

2.2 WORD CHUNKING

One of the reasons for modeling with binary strings is the feeling that the results
are easily portable to situations where more than a single bit is necessary at each
location to describe the system. This can easily be seen when we apply the NK
model to different biological levels. If the binary string represents the four bases
in a strand of DNA, then we need two-bit words to specify the four bases (e.g.,
00:adenine, 01:cystosine, 10:thymine, 11: guanine). If we were to be modeling the
amino acids in proteins, we would need five-bit words (This would even leave a few
extra redundant or meaningless words). If we imagine that we are looking at the
whole set of proteins, we might need very long words indeed.

The question then arises: which of the manipulations that we apply to our
binary strings (mutation, crossing over, inversion) are unchanged if we need to think
with longer words? Are the conclusions claimed for NK models and especially NKC
models complicated by the need to preserve behavior for a range of word sizes? We
are particularly concerned about the meaning of the basic operators on different
length words. Inversion and crossing over may be deleterious far more often when
moe than one bit is-used to represent a basic unit of information.

2.3 CHANGE IN N THROUGH EVOLUTION

An assumption of the NK models and (even more unlikely) in the NKC models
is that there is a single value N and that it does not change in the course of the
simulation. N is the length of the binary string. The length of the genome changes
in evolution, and different species will not share the same N.
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2.4 DISTRIBUTION OF K

Random distribution of fitness values do not reflect "realistic" fitness landscapes.
The use of random assignments to model epistatic interactions was motivated by
an admission of profound ignorance.' 1 However, given tnat we do not know and
possibly cannot know realistic values for the fitness contribution of an allele, it is

also not clear that a random distribution of fitness represents the behavior of "real"
systems well. It may be that conditions defining biological systems are just a small
subset of these random assignments. Conclusions may thus be based on an atypical
set of data. (It would be worthwhile examining the sensitivity of these conclusions
to different assumptions about fitness landscapes.)

A closely related question is whether there are distributions that more closely
fit our intuition of epistatic interactions. Clearly, using a single mean value (K, in
the formalism) to represent the epistatic interactions is a caricature. Assuming a
distribution on the number of interactions would be a better approximation. This
distribution would likely be skewed, so that most genes are unlinked and a few
would be highly linked (see Figure 6).

A similar argument can be made for the parameter C; however, it is more
difficult to recommend a shape for the distribution. Clearly some members of a
community are linked in many ways while many members are peripherally linked
if they are linked at all.

standard use of a single

proposed use of a value for K

distribution for K

Number of
genes

low high

epistatic interactions

FIGURE 6 Current models use a single value for K and one pos'sible distribution of
K values.
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2 3 4

5 6 AA 8

FIGURE 7 This diagram rolfresents six different two-dimensional embeddings (tilings)
of neighbors that preserve the notion of neighborhood for C = 2,3,4,5,6,8. We have
not found one for 7 yet.

2.5 WHAT ARE THE VALUES OF K AND C FUNCTIONS OF?

A species faces adaptive choices which affect its interconnectedness with the rest
of the ecosystem. It is therefore possible that a system, rather than changing the
ruggedness of its landscape (e.g., by changing K) to suit its interconnectedness
with the ecosystem (C), would do exactly the opposite. More plausible is that both
change. "

2.6 REPRESENTING THE NEIGHBORHOOD OF INTERACTING SPECIES ON
LATRICES

When looking at islands of chaos in seas of stability,13 a rectangular grid is used. To
have the intuitive feeling of neighborhood and also vary the number of interacting
species, it is important to use an embedding in two dimensions that preserves the
notion of neighbors. In Figure 7 we indicate some approaches to neighborhoods on
planes that preserve our notion of closeness. (Notice that in the two-neighbor case
a circle is a natural way to have periodic boundary conditions.) Previous work has
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dealt with the four-neighbor case (we think) because it was convenient to display
and discuss since drawing it spans the plane.

2.7 THE ROBUSTNESS AND EXISTENCE OF Kopt

Kauffman suggests that there is an optimum Kopt towards which a species will
evolve. This conclusion is derived under the assumption that no particular epistatic
interaction or set of interactions is especially important. However, it is plausible
that the epistatic interaction of specific trazts might be much more important than
a particular K value (i.e., Kopt). Thus, a successful large combination (much larger
than Kopt) of epistatic interactions might overwhelm the disadvantages of a large
K. Therefore, it is possible that K > Kopt. It would therefore be worth asking how
the force of the "attraction" towards Kopt varies with distance from K. A further
question is: how it would affect the dynamics of the system as a whole to have
certain species "stuck" at K > Kopt?

It is not correct to infer the attraction of a Kopt from observations of higher
fitness scores for species which have K's closer to Kopt. Presumably, the amount of
epistatic interactions within a species is altered by the development of new traits
(or changes in old ones) which interact with existing traits (or the disappearance
of old traits which interacted with other traits). A change in K is not qualitatively
equivalent to a single mutation in epistatic interaction with a single other gene. An
incremental "change" in K (i.e., +1 or -1) results in every single gene increasing
its epistatic interaction with a single other gene. Further, this is not a change in
an evolutionary sense, since a species in the NK model cannot adapt by "changing
its K." A test of the "Kopt conjecture" at the appropriate level of analysis would
operate through "epistatic adaptation," one pair of genes at a time.

2.8 WHAT OTHER OPERATIONS DEFINE THE GENOTYPE
NEIGHBORHOOD?

The one-mutant neighborhood is useful in that it defines what local genotype space
can be explored. Evolution in the NIK model is constrained to pass via 1-mutant fit-
ter variants.9,1", 11,12,16 But there are other mechanisms, as important as mutation,
that define the local neighborhood. (Here the neighborhood is the set of genotypes
that can be reasonably explored in a single generation.)

The fraction of local genotype space to be explored is a function of popula-
tion size, genome size, mechanisms of exploration, chance, etc. Since the part of
the genotype space explored is not necessarily exhaustive, the movement of fitter
neighbors rather than fittest neighbors seems a bit more accurate.

Mechanisms of exploration allow us to cross the discrete bit space. Mutation is
one of those mechanisms and the one-mutant neighborhood is the "local" space that
is explored in the standard NK model. If we combine inversions or diploid genotypes
with crossing over, we can then jump far across the space in a single step. So, in our
earlier discussion on formalism, we added the inversion and crossing-over operators.
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These operators act as trap doors (worm holes if you wish) which connect parts of
the space that may be far apart with respect to hamming distance. Population size
acts as a constraint in as much as there are a finite number of offspring. Genome
size interacts with population size in that a huge genome has a very large local
neighborhood to explore and if the population size is small, only a small fraction
of this space will be explored.

2.9 SHOULD ALL SPECIES HAVE THE SAME TIMINGS?

Genome size should be inversely proportional to the number of steps a population
can take in a given iteration of the model. Large genomcs should take fewer steps and
so should be able to explore a smaller subset of the local genotype neighborhood.
Here we see that a natural complication of using different N is that we now must
worry about relative rates of evolution.

2.10 OTHER QUESTIONS

In the spirit of Kauffman and Weinberger's list (above), we will end this discussion
with a list of questions that will need to be addressed in subsequent analyses of
fitness landscapes within the NKC formulation.

1. What is the relationship between K and C?
2. Why is the evolution of K more important than evolution of C?
3. Why should the fitness contribution of K and C have the same magnitude?

Could K and C be in a different "currency?"
4. How can the fitness of interacting genes be reflected in C?
5. What is the relationship between fitness components and the number of genes?
6. How do we introduce the long and convoluted series of events (development)

that it takes from genes to traits? This is critical because it is traits that
interact.

7. What is the mechanism of ecosystems tuning themselves via changing S's (the
number of species)?

8. How important is it to model swarms across the discrete space instead of just
populations as points?

9. Does it affect the model results if turns are taken synchronously or serially?
10. How does epistasis in NKC models correspond to the standard notions of

epistasis?
11. How do we reflect the intuition that different members of an ecosystem are of

different complexity?
12. At what levels of organization are the NK/NKC models most appropriate?
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3. NKC MODELS AND SOCIAL SCIENCE
In this third part we want to broaden the horizon of NKC models to the social
sciences. We examine the application of NKC models to the problem of coevolving
complex strategies, such as firm diversification, and to coevolving complex belief
systems, such as attitudes toward the government. By "coevolving" we mean that
different actors adapt to each others actions over time; by "complex" we mean that
individual actors interact with each other so that the outcome is more than the sum
of individual actions. To demonstrate the usefulness of NKC models in the area of
social sciences, we outline a few specific applications.

3.1 THE PROBLEM OF COEVOLVING STRATEGIES

Evolutionary models have been used to study the coevolution of strategies in the
social sciences. 3 4 These models assume that effective behavior becomes more com-
mon either because of emulation of successful actors 20 or because of the physical
replacement of actors by more successful innovators.' Coevolving strategies in NKC
models differ from the evolutionary models above. Specifically, rather than assum-
ing that unsuccessful behaviors are replaced, we assume that actors incrementally
change their behavior over time. In this context NKC models would be interpreted
as follows:

1. Each actor (species) has a set of actions (genes) that it may or may not engage
in. There are N such actions which together form the strategy of an actor.

2. Each of those actions contribute to the success, or failure, of an actor. The
overall success of an actor is called the performance (fitness) of an actor.

3. The contribution of the performance by a particular action is contingent on K
other actions by the same actor, and C actions by each other actor.

4. Every actor chooses to change a single action during each time period. Identical
to Kauffman, one can assume fitter dynamics or fittest dynamics.

One of the key assumptions of NKC models is that individuals choose only ac-
tions that improve their position locally. Such an assumption is consistent with the
bounded rationality research tradition of human and organizational be-
havior. 6"17' 20 ,22 The assumption of myopic behavior allows us to explain which of
many possible Nash equilibria (or "local" Nash equilibria13) will be chosen from a
given starting point. Such an approach not only allows us to explain why actors
sometimes choose an inferior local optimum, but also why outcomes are history
dependent and contingent on small events.'
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3.2 COEVOLVING STRATEGIES OF FIRMS

NKC models can be used to study coevolving strategies of economic actors. A
particular example would be a firm's decision to diversify into new markets. The
decision to diversify is difficult because firms must take into account many interde-
pendent dimensions, such as the profit potential of different markets, the synergy
effects of operating in related markets, and the strategic responses of competitors.

For example, Michelin, a major European tire manufacturer, decided to enter
the North American market because it expected high profits in that market due
to its superior technology in producing high-quality radial tires. However, Michelin
did not expect that Goodyear, a U.S. tire manufacturer, would retaliate by lower-
ing its tire prices in major European markets. This example not only demonstrates
the complexity of diversification, but also demonstrates the consequences of myopic
behavior when strategic decisions are linked. Michelin tried to myopically improve
its market position, but at the same time "deformed" Goodyear's profitability land-
scape, which in turn led Goodyear to myopically cut prices in Europe.

In a model of firm diversification, a single action would be to enter or exit a
market. K would be interpreted as the number of synergies among different mar-
kets, and C the number of interdependent actions between each pair of competitors.
Such a model of firm diversification can be used to study why firms "lock into" sub-
optimal positions (or "competency traps," as Levitt and March15 call them). This
model allows us to study how the effects of "lock in" varies with the technological
complexity captured by K and C. Once the effects of "lock in" are understood, NKC
models could be used to suggest improvement of strategic behavior, so that firms
could "walk on rugged profitability landscapes" without falling into competency
traps.

3.3 THE EMERGENCE OF BELIEF SYSTEMS

NKC models, ap.plied to social psychology, can offer insights into the dynamics
of changes in attitudes and beliefs within an organization or society. Further, it
can explain the existence of particular types of reinforcing cleavages. For example,
there is a strong correlation among attitudes towards government intervention in the
economy, the necessity of a strong military, and the desirability of a social welfare
system. We discuss an application below where people are the level of analysis.
but these models of social conformity might also be applicable to "societies" of
organizations (e.g., governments,2" businesses, etc.).

Psychology offers the beginning of a solution. One's beliefs are affected by
the beliefs of surrounding people.7,"9 Filrther, there tends to be a consistency
among one's beliefs, such that the beliefs are mutually reinforcing ("cognitive
consistency" 2 ). For example, an individual who believes in the desirability of a
large military budget would tend to believe that such expenditures come at a low-
opportunity cost. However, these are results at the individual levei. The question
we are asking is about characteristics of aggregate opinion. The NKC model offers a
means of examining what pattern in the aggregate would emerge out of individual
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beliefs (for an early model see Abelson and Bernstein'; for more recent models see
Novak et al.2" and March' 8 ). In this context the NKC model would be interpreted
as follows:

1. Each individual (species) has a number of beliefs (genes) which it may or may
not hold. The total number of beliefs is N.

2. An index of cognitive frustration (fitness) can be constructed, based on the
level of consistency among the individual's beliefs, and the congruence of those
beliefs with those of surrounding individuals.

3. The contribution to cognitive frustration of each belief is contingent upon K
other beliefs within that individual, and C other beliefs in each surrounding
actor.

4. Each actor may change one belief each round, either under the assumption of
"fitter dynamics" or "fittest dynamics" as outlined by Kauffman.

It would be useful to assume that all actors exhibit identical interactions among
their own beliefs. For example, for all actors, believing "military spending is neces-
sary to counter the 'Soviet threat"' and "military spending is good for the economy"
results in a better cognitive frustration score than believing just one or the other.
This model could be applied to the dynamics of opinion change. For example, until
very recently the belief in the Soviet threat was the organizing principle of U.S. for-
eign policy. Beliefs about military spending, and about policies towards particular
countries, among other things, were shaped by this overarching belief. Now that
this belief has been exogenously changed, a critical question is how other beliefs
about U.S. foreign policy will change.

3.4 SUMMARY

The above interpretation of NKC models as coevolving strategies shows that this
family of models has a much broader range of application than just explaining
coevolving species in biology. In particular, NKC models can be used in such diverse
fields as economics, political science, organizational theory, and social psychology.
NKC models can be applied to any research area that involves studying complex,
coevolving behaviors at the individual, group, or organizational level.

4. CONCLUSIONS
We found NKC models to be stimulating and illuminating. We have tried to bring
together three of the main directions that our group took. The first section of this
paper summarized a mathematical formalism, for the NK family of models. The
second section focused one. Our third section explores possible applications of NK
models to the social sciences.



350 Jeremy John Ahouse et al.

We found the NK and NKC formulations to be a good intersection and basis
for discussion for individuals whose areas of interest reached from immunology
to evolution to physics and (as demonstrated in section 3 above) economics and
political science. This is one of the strengths of this approach but may also be
its downfall. We consistently found it difficult to rigorously apply the terms and
relations of NKC models into the terminology and "facts" of a particular discipline.
We look forward to future results in both the theoretical and specific applications
of these models.
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Complex Patterns, Simply Recognized

INTRODUCTION
Visual recognition may be taken to be the ability to respond specifically to a par-
ticular scene of view from among many similar ones. Images falling on our retinae
also need somehow to be functionally related to our memories of previously seen
images for identification to be of any use.

Creatures with a need tL respond-to the objects in their visual environment in
unsophislicated ways can be preprogrammed with a repertoire of stimulus/response
behaviors. With increasing environmental complexity, such programming becomes
less practical, and a more flexible approach is required. Things seen need to be
recorded and used to modify future action in order to survive.

The human visual system is powerful and anatomically complex. This raises
the question: Is the process of recognition itself necessarily complex? What, would
be the minimum system requirement for human-like recognition in real visual envi-
ronments? The following three major requirements may be put forward as probable
prerequisites for the formation of useful, internal representations of visual images.

1991 Lectures in Complex Systems, SFI Studies in the Sciences of Complexity,
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1. Selection: Whether it be via wavelenrLh selectivity or some higher-level process,
some choice about survival relevance has to be made about what should be
extracted from the welter of information available to the retina.

2. Specificity: To avoid too much confusion, the system should display a high level
of specificity so that even small chaLges in an image should result in perceptible
differences ,,q the resulting representation.

3. Relatedness: Things seen should be related in visual memory by a range of
associations (...The shape of that hat reminds me of a car she was driving...).

A simple algorithm has been developed, with reference to the human visual
system, which can associatively store and retrieve information about a large range
of different images and thereby act as a visual recognition device.

The central question of how we respond to objects may be addressed as a
problem of coding (to gain access to visual memory) and decoding (the subsequent
execution of, for example, appropriate, voluntary muscle movements). This work
addresses only the first part of the problem. The basic hypothesis is that images
which look similar; a human being should result in the production of "similar"
codes by any process which attempts to simulate human recognition performaInce.

It must be stated that such things as image movement, stereopsis, color vision,
a-.'d level of attention have not been considered in this study. Neither was the
objective to explain how- efficient image transmission and reconstruction may be
performed. The sensation of seeing itself is ignored. What is experienced when,
for example. an (emotionally neutral) triangle is viewed may be just as much of
an internal construct as is generally believed to occur when we see things in our
mind's eye. This approach challenges Marr's 19 assertion that an explanation of
vision must conform to the plain man's experience of it. It seems reasonable that
no theory must contradict objective measurements of experience, but introspection
is not necessarily a reliable test of any theory. The visual system must be able to
deal with large numbers of combinations of sensory inputs (these are limited, in
practice, by the finite human lifespan and the fact that our visual environment is
actually much less than infinitely variable). Here we restrict the problem still further
to the identification of monochrome images of objects (and parts of objects). Even
so, the number of potential imagesjs intirnidatingly large.

As a familiar introductory example of the type of question for which an expla-
nation if required, how can the following all be recognized as variants on the same
theme, while still being seen as subtly different...

A AAAA

BACKGROUND
Seeing something is clearly necessary but not sufficient for it to be recognized (it
might be the first experience of it, or it may be out of focus and thereby only
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identifiable as being within a certain general category, or it may be simply upside-
down). Experiments on recognition performance require, ideally, the control of a
prior visual experience, which is difficult with human subjects. Much of the work
in the literature, therefore, does not take this into account or relies on limiting the
recognition task to a discrimination between membership and non-membership of
a designated set of such pictures. Demonstrations of the enormous capacity of the
human visual system to store and retrieve pictorial material have been conducted.
A few examples are given below.

Goldstein and Chance' 0 presented their subjects, for three seconds each, with
pictures in three categories: women's faces, magnified snowflakes, and inkblots
(three seconds corresponds to no more than nine fixations). Subjects were able
to achieve 71% success in distinguishing between those slides of faces which they
had seen before and those which they had not. (The recognition rate corresponding
to success by chance was 14%.)

Potter and Levy 2 1 found recognition accuracy for pictures varied from 15%
(with a 125ms exposure) to 90% (for two seconds' exposure).

Recognition performance was found to be a positive function of the number
of fixations on a given picture and is not dependent on viewing duration per se
(if the number of fixations is restricted to being constant). Pictures viewed only
peripherally are not remembered at all.' 7

Results such as this seem to show that at least some significant things in large
numbers of pictures can be efficiently stored in memory, despite restricted access
to their information content, if the pictures are looked at directly.

The history of attempts to achieve pattern recognition has included both efforts
inspired by biological systems and those which ignored Nature. The list of ideas
includes: whole-pattern templates, e.g., the "bug detectors" of Lettviu et al.16 ;
feature (mini template) detectors, derived from interpretations of the work of Hubel
and Wiesel13 ; Marr-Nishihara canonical elements' 8 ; massively parallel statistical
sieves (neural networks); Fourier transforms motivated by the findings of Campbell
and Robson 4 ; and so-called structural models (lists of characteristic properties)
from work on artificial intelligence. Few have been successful by any standard. The
work described here is different in that it involves viewing each scene a small area

at a time and forming a unique representation of each successive, small "window"
taken as a whole.

The cortices of cats, monkeys, and humans have been shown to perform anal-
ysis of visual images by the use of oriented local filters tuned to different spatial
frequencies (spatial frequency bandwidths of one octave and orientation tuning
bandwidths of 15-20 are typical7 ). It is not clear what, if any, significance these
cells have for the recognition of patterns. A very large part of the visual cortex of
these species is devoted to treatment of signals from the fovea-a tiny area near
the center of the retina. The area with diameter subtending, in humans, the central
20 minutes of arc of the fovea was designated.the foveola by Polyak." A fingernail
seen at arm's length subtends about one third of a degree at the eye. The foveola,
therefore, subtends an angle equal to one third of a fingernail. This tiny region
seems to have great significance for the recognition of patterns.
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The foveola is particularly suitable subject in the study of vision because:

W it has a large cortical representation;
* it contains comparatively few, regularly arranged anatomical elements (only

cones are present, providing dichromacy 6);

a it forms a di -ect link to the visual cortex;
0 it contains a relatively low ratio of cones to ganglion cells (0.3)21; and the optics

which produce faveolar images have been extensively investigated.'

In addition, cells tuned to a very wide range of spatial frequencies are found in the
foveal region of the visual cortex.

Harmon"1 showed faces could be recognized using a coarse pixellation of 16 x 16
with eight grey levels. More recent work by Campbell' has confirmed that only a
few hundred activated groups of seven cones at a time in the foveola of the human
retina are required to identify most everyday objects. This has the result that faces
can be identified at a distance of 35 m.

Consider constancy of recognition; it is commonly accepted that in order for a
system to be able to recognize an object at a distance, for example, it should be
able to manipulate a scale-invariant internal representation of that object so as to
equate it to the current view and permit recognition. Such invariants actually seem
not to occur in a foveola--however. Size constancy fails below 1/2 degree. 24

"* Rotation invariance: It is very important that, for example, a right-angled
diamond and a square of equal side length are perceived as different.

"* Position invariance: The threshold for displacement detection in an unstruc-
tured field is near 1.5 min arc1 5 or about three foveolar cone diameters.

The freedom of the eye to move makes the notion of position invariance vague.
What about local and global changes of illumination and occlusion? Recognition

under these circumstances is actually rather hard to do. We are not particularly
good at spotting camouflaged wildlife or reading an eye chart on which a mixture
of sunlight and the shadows of a leafy branch have been superimposed. By viewing
a scene as a sequence of small areas, problems of figure/ground segmentation (such
as looking for a particular bo.. in a box of engineering components) can be rendered
tractable.

OPERATION OF THE PRESENT MODEL
Every white dot in a black and white picture screen is assumed to spread, according
to a simplified simulation of diffraction, which causes a group of cones to become
activated. This is shown for a pattern consisting of two stars or dots in Figure 1
(natural scenes or hand-drawn images can be accommodated).

As the model eye moves from fixation to fixation, each successive small area
of an image talling on the central few hundred receptors of a simulated retina is
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analyzed. The image of an object or part-object on this central 1/3 degree of the
retina is assumed to be moved relative to its original position by signals communi-
cated between retinal cell in the three principle axes of the regular, hexagonal cone
mosaic (Figure 1). This activation pattern may then be sampled and processed by
idealized cells which are each sensitive to a narrow range of orientation and spatial

frequency. The differencing operator indicated in Figure 2 fulfills this function and
generates results which are broadly consistent (Cl, C2, C3.. .) with the kinds of re-
sponses actually recorded from complex cells in the cortices of mammals.7 Attempts
to explain the significance which these cells may have for the recognition of objects
have hitherto been unsuccessful. For each of the three principal orientations of the
receptor mosaic, the outputs of these simulated cells are summed, giving rise tc
the three-element code. It is of particular interest that these simulated cells gener-
ate relatively small responses to "-meaningless" random dot patterns (visual noise).
This is believed to be related to the physiological finding that no real long-term
memories are formed from such images, thus avoiding potentially massive waste of
memory capacity, which might result from combinatorial explosion.

The asymmetric, local transmission and adding of activation values in the plane
of this simulated retine, shown in Figure 1, has the effect of specifically labelling
edges within an image according to their orientations. When this resultant activa-
tion matrix is analyzed, by-the oriented receptive fields, the (x, y, z) code produced
is characteristic of the original image in the sense that any change in the image
(other than adding uniform noise) must affect at least one of the (x, y, z) compo-
nents. This type of process has been previously discussed in connection with the
well-developed visual system of the octopus. 26

A single receptive field width of three cones and three orientations has been
used. This is the computationally simplest selection which avoids errors of orienta-
tion, etc., which is still capable of surprisingly effective recognition performance.

Resulting codes have been generated and plotted as the coordinates of points
in a three-dimensional representation space, each of which uniquely stands for a
particular view.

Each view of an object produces a slightly different coding so that similar
views "clump together" in representation space. This results in automatic, non-
rigid perceptual categorization. Novel objects are automatically classified by virtue
of their proximity in representation space relative to those of known images. Known
objects are coded and can reactivate their existing representation and its associates:
i.e., they are recognized.

As we manipulate an object or move around it, we foveate many successive
views. Hochberg12 has said that perception depends on integration of the parts
seen foveally in each of several glimpses. The continuity of these trajectories has
the effect that objects presented in the continuously varying sizes and orientations
of everyday experience can still be recognized.
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FIGURE 1 Activaion levels, cusd by an image of two "sar" falling on the simulae

retina, are shown being transmited asymmetrially along the axes of the hexagonalmosaic so as to for a resiual activation matrix (mosiac is shown distor to square

for computational ease).

Warrington and Taylor2 7 found that certain neurological patients were capableof recognizing objects only when seen fom "conventional" viewpoints (sugesting
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that they were unfamiliar with this view and had, therefore, no stored representation
of it). Similarly, Palmer, Rosch, and Clare 20 reported that, for example, an unusual
view of a horse was not easily recognizable. This suggests that, rather than com-
puting what the plain view of a horse actually was from stored, conventional-view
"coordinates," failure ever to have seen and recorded this view meant that it was
simply not associated with other, conventional views labelled "horse." Yin2 9 found
that his subjects were poor at recognizing inverted faces. Diamond and Careys

found that this was true for a wide range of other objects, too.
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FIGURE 2 Design of simulated receptive fields.
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FIGURE 4 Symbols chosen for their apparent "~similarity" (see also Figures 7 and 9).
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FIGURE 5 For a graphical description of the representations formed from these
diverse images see Figures 7, 9, and 10.
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FIGURE 6 See also Figures 7 and 10.
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49

iO

FIGURE 7 Overall view of
"representation space."

no. Descnpiton
2 Sinele dot
4 5-do c
5 5-dot c r"id about vstical
6 three dots: one above two

07 three dots: two above one
4 8 small c: open at 10 O'clock

19 9 small c open at 4 o'clock
10 six dot bexaston

6I I two dots touching bonzontal
14 two dois.one space between
15 two dots..rwo..spNce between
16 two dots..three.,spaces betwen
17 two dots..oug..sp.aces between
18 two dots..five..space between
19 two dots.stx..spaces between
20 two dols.seven spaces between

21 two dots eight spaces between

22 two dots..mne spaces between
23 two dots.-.en spaces between
24 tho dots.eleven spaces between

L25 rso dots..twelve spaces berwen

FIGURE 8 Representations of some very simple patterns.
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Sno DescnptionR 826 B

P 27 E
28 F
29 8
30 P
50 RIP
31 R
32 3
33 K
34 A

35 C
36 c"

FIGURE 9 Representations of some handwritten capital letters.

38

? 
40 43a

42 41

47 4t

4?

nom FW I,,cnplion 4
38 Baby lace 4.
40 Ttiver lWe
43 Tuwei lace with while s )i
44 Tit'er lace. cloe-up

41 Iduck/rabbit

I didrk
42 rtablil
45 hand- fim
46 hand. I ineei exlendc&
47 hAnd., 2 fiouter exilendraj
48 hand. 3 liniwTes ex ieiwde
49 hand. 4 fineri ex terlded

FIGURE 10 Some more complicated images, including a course temporal sequence.
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is a composite of the simpler patterns, all of which appear as representations in
the bottom right-hand corner of Figure 7. The numbers in bold type in Figures 4.
5, and 6 are used to indicate the relative positions of representations in Figures 7
through 10. Figure 7 shows the overall layout of representation space and indicates
that a wide variety of different types of images can be accommodated within this
scheme. There is a general increase in image "complexity" from the origin (single-
point representations) outwards toward the representations of faces. Figures 8. 9.
and 10 look in more detail at regions of the space shown in Figure 7.

Similar images do, indeed, result in similar codes and this, in turn, causes
clustering of their representations. A short trajectory is shown for the image of -
fist opening its fingers. Also note that the perceptually ambiguous image of the
duck/rabbit is between that of the duck and that of the rabbit. This is true also
for the ambiguous RIP image which lies between the points for P and R.

DISCUSSION AND CONCLUSIONS
These ideas may relate to the work on the inferotemporal cell ensembles known
to be selectively respons'i-- to complex visual stimuli. Perhaps an Prnsemble might
correspond to a knot of trajectories in representation space, each signalling the pres-
ence of a view similar to those to which its neighbors are sensitive. Perret et al.,21
for example, reported the apparent storage of face information in the inferotem-
poral cortex. Sakai and Miyashita 25 reported that IT cells recorded the temporal
sequence of unfamiliar visual images. It has been shwon that IT cells have receptive
fields centered on the fovea and that adjacent cells have similar response properties.

The number of foveations in a human lifetime (3 per second -- 5 x 109) is.
surprisingly, orders of magnitude less than the number of neurons in the visual
centers of the brain, making it hard to dismiss these ideas purely on the grounds of
"capacity." It is possible, it wouid seem, for recognition to be performed on the basis
of stored representations of every single foveation in a human lifetime. This view of
the visual system regards the brain..as essentially a simple image analyzer linked.
by a potentially simple coding process, to an enormous data bank of efficiently
associated visual memories of shape information.

The postulated trajectories, if they exist in reality, could give an insight into
prediction of what is about to appear. It may also be that linkage strength, between
locations forming a trajectory, is related to probability of recall by some Hebb-like
rule. Indeed, this system could be thought of as having the capacity to jump to the
wrong conclusion: when asked to identify a church steeple, it may respond "'rocket
nose cone." This illustrates an ability to generalize and make errors.

The system described here is very simple; yet does seem to have some useful
properties:

M It is potentially fast--one trial learning.
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"* Segmentation can be achieved by looking at small enough areas at a time-local
shadows and occlusion can be accommodated.

"* It is general and flexible.
"* It is specific and accurate as long as images are not composed of regions which

are separated by empty spaces; larger than 3W (see Figure 8).
"* Only simple -technology" "s required.
"* Two ways to associate things are incorporated-visual "similarity" and expe-

rience of sequences stored as trajectories.

Kohonen14 estimated in 1988 that there had been 30,000 papers published on
pattern recognition and that the performance of artificial methods fell far short of
that of biological sensory systems. Perhaps we fail to recognize that although bio-
logical systems are dauntingly complex at first sight, they often have an underlying
simplicity of principle.
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Dynamical Behavior of a Pair of Spatially
Homogeneous Neural Fields

Various types of dynamical behaviors are studied for a neural network
made of excitatory and inhibitory neurons arranged separately in two layers
under the assumption of uniform activity throughout the layers. The layers
are treated mathematically as continuous one-dimensional fields., and the
neurons have binary outputs. The analysis of the system follows one done
previously by Amari, but now the synaptic strengths can vary with time
according to two versions of Hebb's rule. The general existence conditions
of the dynamical behaviors for the two versions are investigated, and the
allowed cases presented.

1. INTRODUCTION
Neural networks are very complex dynamical systems, posing enormous difficulties
for theoreticians to treat them mathematically. So far, only very simple kinds of
networks could have been satisfactorily analysed in mathematical terms (for a re-
view see, e.g., Levine'), leaving many questions about more general networks still
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unanswered. However, simple systems can sometimes give us valid insights about
the behavior of more complex ones, and one can always have the hope that by
adding some small new features to simple systems, one can find new types of be-
haviors and gain deeper understandings about more complex systems. The purpose
of the present work is to try to show this for neural networks made of excitatory
and inhibitory neurons.

Earlier studies on dynamical behaviors of neural networks consisting of neurons
which are either excitatory or inhibitory, and have connections of the so-called
lateral inhibition type, were done in the 1970s by Wilson and Cowan,6 ,7 Ellias and
Grossberg, 2 and Amari.1

In particular, Amari modelled the neurons as being arranged in a continuous
fashion along a pair of one-dimensional neural fields, one made of excitatory neurons
and the other made of inhibitory neurons. The states of the points on the fields
were described by functions ui(z,t),i = 1.2, giving, for each instant of time t.
the average membrane potentials of the neurons around x on the excitatory and
inhibitory fields respectively. The u's were assumed to have a rate of change with
time proportional to the weighted integrals over the fields of the outputs of the
excitatory and inhibitory neurons, including self-excitation. The outputs of the
neurons were assumed to be given by the step function

0 if u < 0;
f 1U if u > 0.

This was done for mathematical convenience, since it was claimed that the results
obtainedI would be valid for a monotonically increasing output function of u with
saturation. The synaptic strengths were assumed to be time invariant and depen-
dent only on the distances between the neurons, w(z, x') = w(x-x'). The inhibitory
neurons did not have connections among themselves, and the connections from ex-
citatory to inhibitory neurons had a very narrow fan out, so that only the inhibitory
neurons imediately below a given point on the excitatory field would receive con-
nections from it. Besides, the strengths of the excitatory-excitatory synapses were
stronger than the strengths of the inhibitory-excitatory synapses at short distances.
but weaker than them at longer distances (characterizing the lateral inhibition kind
of connections).

Amari studied the dynamics of his field equations for two special cases, namely
when the solutions are spatially homogeneous, u(z, t) = u(t), and when the solution
is a stationary travelling wave of a fixed shape, u(z, t) = g(.r - 0t). He showed
that solutions of both kinds are possible, and gave some examples of them. In
particular, for the spatially homogeneous case, he found stable, oscillatory, and
transient behaviors. Assuming spatial homogeneity one can represent the state of
the system by the vector u = (ul, u2) in the u1 -u 2 plane. In the first quadrant ul
and u2 are positive, and because f[u] is the step function, f[ul] = f[u 2] = 1 in
this quadrant. In the same way for the second, third, and fourth quadrants, one
has f[ul] = 0 and f[u2] = 1, fuIt] = f[u 2] = 0, and f[ul] = 1 and f[u2 ] = 0
respectively. In the u 1 -u 2 plane, a stable state was identified as a constant vector
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in a certain quadrant towards which u would tend when having its initial position
in a different quadrant. A transient behavior was identified as a situation in which
the initial vector uo happened to be in the same quadrant as the constant vector,
so that the system would never get out of that quadrant, decaying quickly towards
the constant vector. On the other hand, the oscillatory behavior was characterized
by a constant jump of the state vector from a quadrant to the next one, and from
this one to the next one, etc.

In this work, Amari's analysis is extended by incorporating into his model the
following features:

"* The inhibitory neurons have connections among themselves.
"* The excitatory-inhibitory connections have a larger fan out, so that excitatory

neurons at a point x can make synapses to inhibitory neurons located at points
other than x.

"* The two fields receive an external excitatory input v.
"* All the synaptic strengths can vary with time according to rules defined in the

next section.

2. THE FIELD EQUATIONS
The general field equations obeyed by the excitatory and inhibitory membrane
potentials ul(x,t) and u,(x,t) are

OuI (x, t) u, (X, t) + - u((x,x',t)f [ul(x', t)]dx'a" t I

- w.• (x, x', t)f[u2 (x', t)]dx'+ (1)

sl(x,t)v(x,t) - hi,

and

0u2(rX, t) - u 2(x,t) +!Jw 3 (XX' t)f[ul( ',t)]dX'a ;t I

- w 4 (X, Xz',t)f[U2 (x',t)]dx' (2)

+ s 2(X, t)v(X, t) - h2,
where 7 is the time constant of neuronal dynamics, assumed to be the same
for both kinds of neurons; wi(x,x',t),i = 1,... ,4 are the synaptic strengths of
excitatory-excitatory, inhibitory-excitatory, excitatory-inhibitory, and inhibitory-
inhibitory synapses respectively; si(x, t), i = 1, 2 are the synaptic strengths of the
connections between the external input v(x, t) and neurons in the two fields; and
hi, i = 1,2 (hi > 0) are the resting potentials towards which ul and u2 decay in the
absence of stimuli.
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The assumption of spatial homogeneity permits one to rewrite these equation
as:

7au 1 t) =_ - (t) + f [ui(t)] I J I(x, ' t) dx' - f [u, (t)] JW2 (,x', t)dx'

Ot_ (3)
+ sI(x, t)v(z, t) - h,

and

-rU2(t) = - U2 (t) + f[U1(0) W3(xz', t)dx' - f[U2 (0) W4 (XX', t)dx'
at_ 1 (4)

+ s 2 (X, t)v(x, t) - h 2.

Regarding the equations governing the time variation of the synapses, they will
be assumed to be of a Hebbian type. 4 Two possible versions of the Hebbian rule will
be considered as a way of comparing their implications for the system's behavior:

A. The first version is the one adopted by most of the authors in the literature. It
assumes that the synapses vary proportionally to the product of the outputs of
the pre- and post-synaaptic neurons, denoted here by Upre and Upost,

r' t = -wi(x, x', t) + ci(x, X')f[Upost(t)]f[Upre(t)]. (5)

B. The second version is the one proposed recently by the author. 3 In it the
synapses where the pre-synaptic neuron is excitatory obey the same rule as
Eq. (5), but the synapses where the pre-synaptic neuron is inhibitory obey the
following rule:

T -• -wi(x, x', t) + ci(x, x') [1 - f[upo0 t(t)]] f[upre(t)]. (6)at

Let us call the first version type A, and the second one type B. In the type
A version, the synaptic strength of both excitatory and inhibitory synapses will
always increase when the pre- and post-synaptic neurons are firing in synchrony. In
the type B version, this will happen as well for excitatory synapses, but inhibitory
synapses will increase only when the pre-synaptic neuron is firing and the post-
synaptic one is not firing. The constant r' appearing in the above equations is the
time constant characteristic of the synaptic dynamics and is the same for both
versions and for the four synaptic types. The quantities ci(X,X'),i = 1,. 4 are
assumed to be given by

ci for £ - x' < 1i,
ci(z,') = 0 for Iz-x' J>tj,
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where 4i is the maximum distance within which the ith synaptic type can have
non-zero strength.

As the external input is excitatory, the synapses between it and the neurons
in the fields will always change with time according to the type A version of the
Hebbian rule, ,",Os,(z, t)_

r O t si(z. t) + bif [ui(t)]v(x, t), (7)

where bi, i = 1, 2 are constants, and T" is the time constant characteristic of the
dynamics of the input synapses. It is assumed to be different than r'.

Since f[u] is the step function, one can analyse the system's behavior in the
U1 -U 2 plane, as Amari did. For each quadrant of this plane, the f[u]'s are constant,
so that Eqs. (5) and (6) can easily be solved having solutions decaying exponentially
with time as exp(-t/r'),

Li(x, x, t) = u(x, I)e-t/r(+)

where the constants ci were put in between brackets because they appear depending
on the quadrant and the version of the Hebbian rule adopted.

For simplicity, we are going to assume that the external input is the same for
all positions, and is kept constant up to a certain time to and silenced immediately
after that,

v(X, t) [v for O<t<t0 ;
t 0 fort>to.

This implies that the strengths of the input synapses have also to be spatially
homogeneous and to decay exponentially with time, according to exp(-t/r"),

si(t) = sie-1'r"(+biv), for t < to,

and
si(t) = sie-t/Tr, for t > to.

As it is possible to determine the-temporal behavior of the synaptic strengths wi
and si for each quadrant, the equations for the membrane potentials ui are reduced
to the general type

rii = -ui + f(t),
where the f(t)'s are known functions of time, one for each quadrant. Equations of
this type can be solved using the integrating factor el/r,

e'' (is + u/r) = eIt/ f(t) -. u(t) = J f(ti)e(u-t)lrdti + ke'/,

where k is a constant.
Hence, representing the global state of the network by the vector u = (ul, u2),

one can write the solutions of Eqs. (3) and (4), one for each quadrant, as
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ist Quadrant
Tr T" +q"k -tr vb +

u(t) Vr l ie-t/r' + - Tvse-/r" + + + L+ h,
T'-T T"' - r (8)

for t < to,

u(t) / T' -- Ttwle-t/r' + kle-'/7+ LI + h, fir t > to; (9)

2nd Quadrant

u(t) - V/- We-t/T'-+ 77" vse-/r"+kJle-(/r+v 2bII+LJ+ht for t < to,

(10)

and
u(t) = w-ile-V/r' + VIC/ + LI + h, for t > to; (11)r(t = 75

3rd Quadrant

7 I'// -ti l

u(t)= T "- vset- + kIJIet/T + h, for t < to, (12)

and
u(t) = kJIte-t/T + h, for t > to; (13)

4th Quadrant

77 ,t TT"/
u(t) = • wIVet/'r+ -vset/T + kVe-t/T + vObIv + LIV + h,

T1-T7 7--

for t < to,
(14)

and

u(t) T7-1 7 IVe-/T' + kIVe-'l + LIV + h, for t > to. (15)u 7t - r- r

The interesting point about these solutions is that they are the same for both
versions of the Hebbian rule considered in this paper: only some of the constant
vectors, defined below, are different. The constant vectors appearing in the above
solutions are the following (apart from the L"s, all of them are the same for the
two versions of the Hebbian rule considered):

WI = (W1 - W 2 ,W3 - 0 4 ), W"I = (--¢02, -- d 4 ), wIV = (w 1 w, 3 ),
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where the wi's are defined as

Wi --- w (x, x')dx';

s = (s1, s 2); b' = (bi, b)-; bII = (0, b2 ); bTv = (bi, 0); h = (-h, -h,):

LI = (2f1c 1-2e 2c 2,2f 3c3 -2t 4c 4 ); L"l = (0,-2t4c4 ); LIv = (2e 1 cl,0) (Type A)

and

LI = (2ticl,O); LIt = (0,--2f4C4 ); LIv = (2t 1ci,0) (TypeB)

where
24ici 0--0f ci(x, xl)dxl-- ci (x, x') dx'.

Thus, one has now the conditions of predicting the system's behavior for a
given set of constants and an initial value for u. Instead of doing that in this paper,
which would involve the (quite arbitrary) stipulation of all the constants appearing
in the equations, we are simply going to verify what sorts of dynamical behaviors
are compatible with Eqs. (8)-(15).

3. DYNAMICAL BEHAVIORS ALLOWED BY THE EQUATIONS
There are two important times which enable one to determine the behavior C, the
system, namely to when the external input stops being applied, and t = D which
gives the asymptotic value of u in the absence of external inputs. Eqs. (8)-(15) allow
us to calculate the values of u at those times, depending on the initial quadrant
in which u is. We will assume that the time to during which the external signal is
applied is much larger than the time constant of neuronal dynamics r, but much
smaller than the two time constants of synaptic dynamics, which will be assumed
to have values of the same order,

r < to < "' ,

Hence, one can write

e-t°/I - 0; and e-t/1' .- t°/' I - to/r/ -- 1 - to/r",

which leads us to rewrite Eqs. (8)-(15) as (the superscripts labelling the u's indicate
the quadrant)
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1st Quadrant

ul(to) Lr 1 - WO + T 1-4) vs+V 2 b + L+h; (16)

u'(oo) = LI + h; (17)

2nd Quadrant

u"(to)_= r 1-(- W" + 7 1 -4) vs+V 2 b + L +h; (18)

u"(oo) = L11 + h; (19)

3rd Quadrant

111 0 vs + h; (20)

u"'l(oo) = h; (21)

4th Quadrant

uIV(to) _r 1 - L) WIV +r 1 -4) vs+V 2 bV + LV+h; (22)

uIV(oo) = LIV + h. (23)

Hence, the u'(to) and u'(oo) do not depend on the initial state u'(0). Irrespective
of '.he point where u(t) starts off of enters in the ith quadrant, it will always go
towards u(to) or u'(oo), depending on t being smaller or greater than to.

The first type of dynamical behavior to be checked against these equations
is the full oscillatory one, where by full oscillation one means the system vector
passing through all four quadrants. This is only possible for t < toP] There are two
possible types of full oscillations, clockwise and anti-clockwise (see Figure 1).

[1]One can clearly see this, because ullI(oo) = h = (-hi, -h 2 ) E 3rd quadrant, so that u never

gets out of the 3rd quadrant once it enters there after to.

.F
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u' (to) u T(to)

u"' (to) ( •

Ik

~~~~ .(to)u(o)II

IV u (to)o"

I 
I

uv (to) u (o

FIGURE 1 The two possible types of full oscillatory behavior. Only the anti-clockwise
one is compatible with the equations.

TABLE 1 Types of Full Oscillations

Clockwise Anti-clockwise

uI(t0) E IV; ui(t0) E II;
uIJ (to) E I; uil (to) E III;
uM (to) E II; ut(to) E IV;
utv(to) E III; u'V (to) E_ I;

To test whether or not a full oscillation is compatible with Eqs. (16), (18),
(20), and (22), one can decompose uI(to)-Ulv(to) into their components along
vectors (1, 0) and (0, 1) and check whether or not the conditions (Table 1) can be
simultaneously satisfied:

Performing the above-described analysis, one finds out that only the anti-
clockwise behavior is allowed by the equations, and that this is the case for both
type A and type B Hebbian rules. To show this here would involve writing down
many algebraic inequalities, and this was not done for reasons of conciseness. For
the type B Hebbian rule, the algebraic inequalities imply that the anti-clockwise
oscillation is possible only for W2 > wl, but this does not happen for the type A
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Hebbian rule, where both w, > w2 and w2 > w, are allowed; the condition for
w, > w2 being

262c2 > ( 1- to) (wI -w 2) + Tr ( o- vs 1 + 2t1c, + v2bi - hi.

It is interesting to mention here Amari's result concerning full oscillatory
behavior.' In his paper Amari mentioned only the anti-clockwise oscillation and
found that its existence condition is w2 > w1 . However, any comparisons between
the two results would be precipitated, because Amari's wi's are not the same as our
wi's. Amari's wi's are the full strengths of the time-invariant synapses,

S= j Wi( -

where the superscript A indicates Amari, while in our case the full strengths of the
synapses are time dependent and are not given by integrals of the wi's solely,

u/t(t)= wi(x,z',t)dx' = e-/T' wi(z,x')dx' (+j ci(x,')dr'

where the integral of ci(z, z') was put in between brackets because its presence in
the above equation depends on the quadrant being considered.

Another interesting dynamical behavior whose possibility of existence can be
checked with the use of Eqs. (16)-(23) is an oscillation between only two quadrants.
which will be called a two-quadrant oscillation (see Figure 2).

For each of the four kinds of two-quadrant oscillations, there are nine possible
dynamical cases. A list of them for the oscillations between the first and the second
quadrants is given in Table 2.

Each pair of conditions in the above table have to be satisfied together with
the conditions in its heading. Similar tables exist for the other three classes.

TABLE 2

u'(to) E II and u/"(to) E I

u"'1(to) E III; u"'t(to) E III; u"t'(to) E III;
uZ' (to) E IV; uIV(to) E III; u1V (to) E I;
u"'(to) E II; u"'t(to) E II; ul'I(to) E II;
utV (to) E IV; uIV (to) E III; uV (to) E I;
u"'t(to) E IV; u"11(to) E IV; u"'(to) E IV;
u'V(to) E IV; u'V(to) E III; u'V(t 0 ) E I;
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[ (to) u l(to)

"• •- -. u1 (to)

UB(to

u (to)

uXV(to)

0$

IV

uI(to) .• (t(o

Iv

U (to)

FIGURE 2 This figure shows schematically the four possible classes of two-quadrant
oscillation, each class comprising nine types given by all possible behaviors in the
two quadrants left. Notice that because, as soon as the system vector enters one of
the "coupled" quadrants, it starts moving linearly towards the other one in the couple,
it ends up doing small oscillations around the intersection of the line joining the two
vectors in the "coupled" quadrants and the coordinate axis separating them.

Combining the conditions for two-quadrant oscillations with Eqs. (16)-(23),
one obtains lots of algebraic inequalities. Analogously to the full oscillatory case,
the inequalities reveal that two-quadrant oscillations are only possible while t < to,
and most of the possible cases are ruled out by then. Only the three cases shown
in Figure 3 are allowed.
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u (to)
U t )IV III UI(to) 111 11(,to)

u (to) u (to U (to) (to) .
. (to) U (to)

*l (to I 1

U" ~(to) U1 to) U (to) u(o

Type B Rule: co> to.

FIGURE 3 The only possible kinds of two-quadrant oscillations allowed by the
equations. They are allowed for both types of Hebbian rules, but the third one can only
exist for the type B rule if w-, > wi.

The three cases shown in Figure 3 are allowed to exist for both versions of the
Hebbian rule considered in this paper. However, the case in which u'(to) E II and
uIV(to) E I can only exist for type B if Lw2 > w1l. An interesting case is the Dne
in which oscillations between the second and the thiru, and between the first and
the fourth quadrants are allowed to exist. Then, depending on the system starting
off in the left or the right side of the U1 -U2 plane, it will stay there and do small
oscillations between the two quadrants of the initial half without jumping to the
other half.

The cases left to analyse are the ones in which the system does not have any
oscillatory behavior. For those cases the system can have only stable states, and
there are four possibilities then, namely having one stable state, two stable states.
three stable states, and four stable states. Obviously, for t < to the system does
not have a strict stable state becau~e it will decay from its state at t = to towards
the allowed states for It > to. As we have seen above, for t > to the system cannot
have any oscillatory behavior, and then it can have only stable states. The possible
stable states for t > to are shown in Figure 4.

As we said before, for It < to the system cannot have any real stable states, but
we can define "stability prior to the vanishing of the external input," i.e., the system
having one, two, three, or four stable points while the input is being applied.[21 and
use this definition for the oscillatory cases to find out what stable behaviors of this
kind are allowed by the equations.

[2] Notice that one of the possible cases of two-quadrant oscillations shown in Figure 3 has a stable
state in this sense in the firt quadrant.
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The author has analyzed the algebraic inequalities fo. ,!1 48 possibilities of
stability before to, and found out that there are four monostaile cases allowed
(shown in Figure 5), six bistable cases allowed (shown in Figure 6), three tri-stable
cases allowed (shown in Figure 7), and one (thie only possible one) case having four
stable states allowed (shown in Figure 8).

All stable >.tates shown in Figures 5-8 are allowed for both versions of the
Hebbian rule considered. Only for three of them (indicated in the figures). the
condition u), > .; follows as an existence condition for type B rules. The cases in
which the system vector starts off in a quadrant which contains a stable state, i.e..
it cannot leave the quadrant, are Arnari's transient states.1

III
III 11(01 I U"'.' U (00,

U(I U '00 U( 1(00) U 00 CU'oo, * 11 (oo)

UU 111 o0 U oc
o)U (ooou 0

2 , 1: > 2 1 c + h,, 212c• > 2 1 , . h >O >c > 2 ¢ - h > "

2 1 >u 21.c h

3 2 2

U 0.

u + oo 311 * u11 M c) u • •

"I 11I ' I* !il '

(ou oo} U1 U(0 U to o u o

U (0000

2 1c >2/1 c 1- 1h >O 2 1,c 2 +hi > 2 1 ¢, 2 1c +.1 > 2 1,c.

h, > 2 11cI h. > 2 c,
2/14c, +h, > 2/1 cII

2 ' l-3> /.I+3 2 ~c 4- h• > 2 1/ c 21 >21

2 - 1

FIGURE 4 This figure shows the possible behaviors of the system for t - cc. The
type B Hebbian rule allows only the four behaviors underlined, while type A allows all
six. The number of stable states and the conditions for each behavior are given below
each graph.
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U (to) U 0(to)

Iv
( U (to) 0 

IV(to) U (to) U (to)

III
U (to)

1II 0

, U (to)

(02 > CO1

I

U (to) I

U (to)
0

011 IV
U (to) n o u (to)

(to U (to)
u ,t)* 111

IV U (to)
u (to)

0)2 > 0.)1

FIGURE 5 The four monostable cases before t to allowed by the equations. They
are allowed for both versions of the Hebbian rule, but two of them (indicated below the
graph) are only possible for type B if w2 > wL.
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U (to) U (to)
U (to)

11
U (to) U (to)

* m 1ll

U"(to) . U (to) U (to)

U (to) . IV IV
IV u (to) " U (to)U *(to)

InIU (to) *S ( u (to) U (to)

I1 * IV Iu (UU (to) U (to) u (to) .u (to)

SU (to)( u (to)lv

SU (to ) U (to)

U (to) Uto

FIGURE 6 The six bistable cases before t = to allowed by the equations. They are
allowed for both versions of the Hebbian rule, without any restrictions on the relative
values of wu1 and W2.

ul (to) U, (to)

UH (to) U (to) U o )----
•U (to)Ul

* •U (tO)

U(to) (oU (to) u (to) (

S(to)(to)

Type B Rule: co, >

FIGURE 7 The three tri-stable cases before t = to allowed by the equations. They
are allowed for both versions of the Hebbian rule, but one of them (indicated below the
respective graph) is only possible for type B if w 2 > w1 .
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U HI(to)"0 U I(to)

U lIIto FIGURE 8 The only case
having four stable states

d (tO) allowed is the only possible
* .one. The system vector stays

in the quadrant where it is
initially while the external
input is being applied.

4. CONCLUSIONS
This paper presented an example of a simple neural network which can be math-
ematically modeled and have its behavior fully understood analytically. Very few
dynamical systems have this property, but the ones that have it can be used to give
us some feeling about the behavior of more complex ones. In the case of the network
studied in this work, it can be considered as an approximation for a network which
receives uniform stimulation over a.large part of it so that that part has roughly
homogeneous activity.

We have shown, by adopting and extending Amari's approach to a similar net-
work, that this network can have a variety of dynamical behaviors: full oscillations,
two-quadrant oscillations, monostable states, bistable states, etc. The existence con-
ditions found for these behaviors are the most general and, therefore, the weakest
possible, in the sense of not assuming any particular set of values for the constants
and parameters of the network (apart from the condition involving the time con-
stants). For a given set of constants and parameters, especially for the biologically
plausible ones, the mathcmatical inequalities to be satisfied would become tighter
and the number of possible behaviors very much reduced.
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A Cellular Automaton to Embed Genetic
Search

A non-deterministic cellular automaton with periodic boundary conditions.
whose temporal evolution resembles an artificial-life world, is presented.
This artificial-life activity takes place in a two-dimensional world, where
worm-like organisms roam around mating, reproducing, and being selected.
Since the motivation for this work has been to embed some form of genetic
search in cellular automata, the automaton is described in terms of its gen-
eral capabilities to act as a framework within which genetic search prob-
lems can be defined. However, it is not an aim of the paper to discuss in
detail any particular application. Although the concept of search has been
traditionally associated with function optimization and with strategies for
solving prespecified problems, these are not the connotations of search we
mean here; rather, we refer to the process of exploring the space of possi-
ble genomes in particular universes, without any concern for optimization
or preconceived evolutionary paths to be followed. Because of this, and
also because the built-in selection process can be better seen as preserving
the non-deleterious features of the organisms (in contrast to selecting for
the most adapted ones), the nature of the evolutionary process eventually
achieved should be seen as an instance of the exaptationist standpoint in
evolutionary theory. The bridge between. the activity of the organisms and

1991 Lectures in Complex Systems, SFI Studies in the Sciences of Complexity,
Lect. Vol. IV, Eds. L. Nadel & D. Stein, Addison-Wesley, 1992 389
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the genetic search process is made by allowing that the main constituent of
the organisms' bodies be the genomes that define the points in the search
space under question. The fact that the cellular automaton relies upon only
four states per cell allows for its use in a number of ways, some of which
are discussed; indeed, the actual cellular automaton described is just one
possible example of a large family. This flexibility opens up the possibil-
ity of the development of a new class of models to study emergence and
self-organization in evolutionary processes, mainly from the standpoint of
artificial life.

1. INTRODUCTION

Originally conceived am an abstract model of self-reproduction, 19 cellular automata
are currently considered as models for comple.: natural systems that contain a
large number of simple and locally interconnected elements. They can be thought
of as mathematical or computational entities, as well as discrete dynamic systems.
Cellular automata are made up of a set of elements (the cells) that are organized
in an n-dimensional lattice (the cellular space), so that at any time, each cell can
take on one among a set of discrete values (the cell states). The states of all cells
in the lattice are updated (usually) synchronously, the new state of each cell being
dependent upon the state of its neighborhood, i.e., its current state together with the
states of a group of neighboring cells. The updating of each cell state is achieved
by applying to the cell neighborhood a set of deterministic or non-deterministic
transition rules which are the same for the entire cell space, providing a sort of
underlying physics for the cellular automaton (see Wolfram20 and Gutowitz 7 for
extensive accounts of both theoretical and practical aspects concerning cellular
automata).

By genetic or evolutionary search we mean a computational model of search
gleaned from concepts in biological evolution, in which non-deterministic mecha-
nisms proviole variability and selecti'on of "genome"-like structures that represent
the points of the search space. As new genomes are created, the space is explored.
New genomes are created through a sexual reproduction process involving already
existing genomes, which implies that new genomes typically contain sequences of
"genes" of their "parents." By calling these sequences building blocks, we can think
of the search as a process in which building blocks are created and built upon, thus
allowing the exploration of the search space.

Our aim in the paper is to present a two-dimensional cellular automaton with
four states per cell, within which it is possible to embed a form of genetic search.P]
As a consequence, the characteristic feature of the automaton is that its temporal

[llSince two out of the four possible states are indeed classes of states, in this sense it would be

more appropriate to refer to an actual family of cellular automata.
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evolution very strongly suggests an artificial-life-type world, where worm-like or-
ganisms roam around, mating, reproducing, and being selected. The bridge between
the activity of the organisms and the genetic search process is made by allowing
that the main constituent of the organisms' bodies be the genomes that define the
points in the search space under question.

The most well-known forms of genetic search in the literature are the genetic
algorithms and the evolutionary strategies,s although other methods also exist. such
as Koza's genetic programming (see Koza,' 0 for example) based on searching on a
population of Lisp programs, the one used in MacLennan1 4 in a study of the evolu-
tion of communication, and the so-called extended genetic algorithm used in Werner
and Dyer"6 for the same kind of application; as far as we know no method has yet
been devised for a cellular automaton. Although the concept of search has been
traditionally associated with function optimization and with strategies for solv-
ing prespecified problems, these are not the connotations of search we mean here;
rather, we refer to the process of exploring the space of possible genomes in partic-
ular universes, without any concern for optimization or preconceived evolutionary
paths to be followed. Therefore, the usual characterization of genetic search in terms
of creation of "useful" building blocks is not appropriate here; we will return to this
point in subsection 2.4.

As far as genetic searchis concerned, what we provide is a cellular automaton
that, due to the features above, can be seen as a framework where a particular
genetic search can be embedded. The emphasis of the presentation is on the de-
scription of the automaton itself. The discussions about how the framework can
be used is made only in general terms; it is beyond the scope of the paper to
discuss in detail any particular application. In the next Section we present the au-
tomaton by relying, whenever possible, on metaphorical concepts suggested by the
artificial-life-type processes it supports, namely, movement, selection, mating. and
reproduction; any details related to the actual state transitions involved can be
found in the Appendices, which present the complete list of transitions being used.
We then give details of the implementation, and discuss how to go about embedding
genetic search within the framework. Finally, we sum up the main points raised in
the paper, pinpoint some characteristics of the framework, and indicate directions
that we are currently pursuing so as bo extend it further.

2. THE CELLULAR AUTOMATON
2.1 A REMARK ON SEXUAL REPRODUCTION IN CELLULAR AUTOMATA

Considering the role of sexual reproduction in the provision of variability in nature,

and the fact that the main genetic search methods rely upon sexual reproduction,

it is appealing to have such a feature also appearing in the present case.
Although a number of cellular automata exhibiting the ability of self-reproduc-

tion have been discovered (see von Newmann,' 9 Codd,3 Banks,' Langton,"' and
Byl2 ), no cellular automaton capable of sexual reproduction has apparently been
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reported. The closest reference' 5 in the literature seems to be where an abstract
discussion is carried out on how to extend the cellular automaton described in von
Newmann19 so as to allow sexual reproduction; however, the complexity of the
automaton renders it completely impractical for present purposes.

The complexity of those self-reproducing cellular automata, as expressed by
the number of states in the initial configuration, as well as the number of possible
states per cell, varies significantly and depends on the design constraints imposed on
them. In particular, the imposition that an automaton should possess the abilities
of universal computability and/or universal constructability implies an extreme
complexity.[2] On the other hand, one wishes to create automata that are prevented
from exhibiting a trivial self-reproduction whose oversimplification would preclude
the modeling of any interesting issue involved in natural self-reproduction.[31

The standpoint adopted here is somewhere between these extremes, since we
have to satisfy a number of constraints such as the necessity of a mating configura-
tion for the parental organisms, the necessity of having to cope with the movement
of the parents and of the offspring as reproduction takes place, the premise of being
able to describe the activity of the organisms from a high-level perspective, etc.
These and other constraints will become clearer in the next sections.

2.2 THE GENERAL PICTURE

The simplest way to envisage our framework is by means of the metaphor of an
artificial-life world in which worm-like organisms randomly roam around a two-
dimensional world defined by the automaton's cell space. Each organism can have
arbitrary length and is defined by a sequence of contiguous cells which constitute
its body, as depicted in Figure 2. The two cells at both ends of an organism, the
terminal cells, always take on a T-state, and can be intuitively thought of as its
head and tail. The other cells between the terminal ones are the actual genomes
which are the objects of the genetic search. Each cell of the genome represents a
gene locus, while its state, represented here by a g-state, is one of the possible alleles
for that particular gene. It should be noted that gene and terminal states represent
classes of states. Throughout the paper, whenever we refer to a T-state or a g-state,
we mean any member of the respective class; in the situations where it is necessary
to distinguish between different states (as in Figure 2), a subscript is used.

Whenever possible each organism moves, each movement starting either left-
wards or along the ascending diagonal on its left-hand side; as Figure 1 clarifies, we
can say that the head of the organism can move either to the left or the top-left cells
of the neighborhood. The top and right-hand edges of the cell space are wrapped

[2] As pointed out in Langton" , as far as biological self-reproduction is concerned, neither of them

seem to currently apply and it is very unlikely that they ever did.
[3]In Langton1 1 it is also remarked that the self-reproduction of a 2-state cellular automaton
performing addition modulo 2 fits ir,..w ti=a category since it can be entirely described at the level

of the automaton's underlying physics.
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FIGURE 2 Example of an n-gene-long organism in the horizontal position. The g-
states represent the states related to a particular genetic search being performed. Any
well-formed organism must have its g-state cell delimited by the left and right terminals
(T-states).

around, respectively, with the bottom and left-hand edges, giving the cellular space
a toroidal geomet-,r. With-such periodic boundary conditions, these two movements
are sufficient to e. rure that the organisms have the ability to cover the entire world.
In this way the organisms are able to approach any other in the world and, when
two of them reach a predefined spatial configuration relative to each other, they
mawe and ivvoduce; after each mating, Lhey begin wandering again, as do their
offspring. Although the parental genomes can have different lengths, it can be seen
that the newborn's length will not be more than one gene longer than the length
of the longest parent.

All this artificial-life-type activity takes place over a quzescent background, that
is, the inactive regions in the cell space that are not occupied bv the. cells of any
organism, and that are represented here by O-states.[11 The neighborhood we use for
the state transitions of any cell is the "Moore" neighborhood, defined by the cell
itself and the eight adjacent cells that surround it in a square lattice, as Figure 1
shows.

2.3 MOVEMENT OF THE ORGANISMS

The basic fact about movement is that either leftward or diagonal movement can
only start towards a mostly quiescent region of the cell space, but, once started, it
will always be completed even if the moving organism has started a reproduction
process. In addition, a movement will never proceed if another organism enters the

("]Quiescence means that an inactive cell that is surrounded just by other inactive cells will remain
inactive.
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neighborhood of its left-hand side terminal; this prevents organisms from "bump-
ing" into each other.

As an organism moves, a special state comes into play so as to occupy the empty
place of the cell that has just been "vacated." This movement state, represented
here by an rn-state, exists within an organism only while the movement is taking
place, disappearing as soon as the organism stops. Figures 3 and 4 show organisms
moving respectively to the left and diagonally, illustrating the action of the m-
state. Although the figures show situations in which the organisms started their
movement in one of the two possible directions and carried on in that direction
through subsequent steps, in typical situations the organisms move in a composition
of both.

Before starting a movement, the organism first "senses" a mostly quiescent
neighborhood ahead in order to "check" whether the way ahead is "free." If that is
the case, then it "casts" a movement state along the available direction, "trying" to
start the movement. rhis situation can be seen in Figure 3 during the transitions
from time to to ti and from t2 to t3 , and also in Figure 4 during the transitions
from time t2 to t3 and from t4 to t 5 . If only one direction is available, only one
movement state is cast, and the organism just moves in that direction. On the
other hand, if both directions are available, a random choice is made among them,
but also including the possibility that the organism just does not move, by simply
"withdrawing" both movement states.

If an organism could not carry on its movement because of some obstacle in
its way ahead, soon after all its m-states disappeared its body would remain in a
position determined by the path it went through. To compensate for that, we allow
an additional kind of movement which is an upward movement of the body, whose
effect is, whenever possible, to set the body in the horizontal position: Figure 5
shows one such situation. As it will be clearer in subsection 2.5, the body's upward
movement is relevant for the reproduction process, since it allows the increase of
the rate of preservation of (noib-ueleteriou's) parental gene configurations in the
offspring; in other words, its effect is to decrease the randomness associated with the
process. But independently of this justification, the upward movement is interesting
in itself due to the extra "realism" that it adds to the activity of the organisms
without the need of any extra state.

to T gi g3  T
I I m T gi g, T
t2 T m gi g3 T
t3 m T gi m gj T

N4 T m gi gj m T FIGURE 3 Succession of snapshots
t5 T gi m gj T of the same set of cells as a 2-gene-

t6 T gi gj m T long organism moves 2 cells leftwards

t7 T gi g T . . in successive iterations. The dots
represent the quiescent state.
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FIGURE 4 Successive snapshots of the same set of cells as a 2-gene-long organism
moves 3 cells diagonally, from a horizontal initial position. The dots represent the
quiescent state.

Note that, as a consequence of the three movements, the actual movement of
the organisms is typically a composition of all of them, with different organism's
cells moving in any of the three directions at the same time. The overall spatial
disposition of the genomes in the cell space 6f the automaton is then always mono-
tonically descending from the left, and, it is tempting to say, in a worm-like fashion.
The complete list of the state transitions for movement can be found in Appendix A.
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FIGURE 5 Subsequent snapshots of the same set of cells showing the body
adjustment of a 3-gene-long organism, from an arbitrary initial position. The dots
represent the quiescent state.

2.4 SELECTION

Selection takes place in the following way: if for some reason the state of a gene or a
terminal cell changes to the quiescent state in a mostly quiescent neighborhood. the
entire organism vanishes; the process occurs in a stepwise way, during the next set
of iterations of the automaton. This feature is equivalent to saying that organisms
which lose (at least) one terminal state and/or one g-state are not considered to
be proper, well-formed organisms and then must die out. Appendix B presents the
complete list of state transitions for selection; it is worth noting there what we
mean here by a "mostly quiescent neighborhood."

As far as applications are concerned, it is necessary to design appropriate tran-
sition rules whose actions impose quiescence on at least one terminal or g-state in a
particular neighborhood; as soon as this organism happens to be in a mostly quies-
cent neighborhood, it will eventually die out. For example, suppose one wishes all
non-homogeneous genomes (i.e., genomes presenting two or more different types of
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genes) to die out. In this case, a rule has to be added to the system so as to detect
the presence of two different neighboring genes in the same organisms, so that, in
this situation, the gene in the center cell of the neighborhood is deleted, i.e., that
cell becomes quiescent. As a consequence, as soon as newborn genomes with this
deleterious feature happened to be in a mostly quiescent neighborhood Lhey would
die out.

An important point here is that selection as described above is not adaptation-
ist, i.e. the organisms are not selected for by some concept of fitness. The emphasis
is not on preserving the fitter genomes, but on killing off the or.es which have dele-
terious features in a particular situation. The emphasis thus is on concepts such as
viability rather than fitness, and evolution by satisfying world constraints, rather
than evolution towards solving predefined problems posed by the world. This way of
looking at selection, exaptationism (a contraction for extra-adaptationism) is due
to Gould and Vrba 6 and has increasingly gained support in evolutionary theory
in recent years (see also Gould and Lewontin' and Piatelli-Palmarini'"). Exap-
tationism is a generalization of traditional Darwinian adaptationism rather than
an opposition to it, and its support has been due to the fact that exaptationist
explanations in evolutionary theory have allowed clearer accounts of a number of
genomal changes that are neutral in terms of their adaptive value but that are se-
lected nonetheless. In order to keep coherence with the exaptationist standpoint,
we should replace the concept of a "useful" building block for a non-deletenious one.
In the current approach what is guaranteed is that any organism that is selected
has some non-deleterious building block, even though it may be useless (note the
contrast with the traditional parlance within the context of standard genetic search
methods).

2.5 REPRODUCTION

Two organisms with any length will mate if they align their heads and their first
gene, leaving a layer of quiescent states in between; the first state transition de-
picted in Appendix C clarifies this situation (the rest of the Appendix shows all the
other transitions involved in reproduction). In the mating configuration, one of the
parental organisms is on top of the quiescent layer and the other below, their heads
being in the same column of the cellular space. Reproduction then goes on so that
the new organism is produced in the quiescent layer, starting from the matching
heads and stretching to the right. Born this way, the length of the newborn genome
is never more than one gene longer than the length of its longest parental genome.
Just after reproduction starts, as soon as the pic.cn on the top find its way ahead
"free," it restarts its movement; immediately after the way ahead is free for the
newborn it too moves, even if its reproduction has not yet finished. Finally, the
same thing happens to the parent on the bottom.

The cells of the newborn are created orie at a time, both the genes and the
terminal states. There are four basic classes of state transitions for reproduction:
deterministic rules leading to a T-state, non-deterministic rules leading only to a
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g-state or only to a T-state, and further non-deterministic ones leading to either
of them. Reproduction starts by creating a head for the newborn whenever the
situation described above takes place (although the actual T-state used is randomly
chosen among the parental ones). Then it proceeds in a non-deterministic fashion
by creating its genes. Finally, it creates the newborn's tail in a non-deterministic
way, unless one of the following happens: first, the newbori, has "'moved too much"
even before completely born (i.e., an m-state reached its right-hand extremity, as
the last transition in Appendix C shows), or second, the:• is no more possibility for
the newborn to acquire a gene from its parents (as shown in transitions 6, 7, and
8).

The fundamental point about reproduction is that it must be able to provide
variability without being disruptive; i.e., it should allow for the preservation of
the non-deleterious configurations of genes already existing in the neighborhood;
in other words, the viable building blocks within the neighborhood should be pre-
served. Since in the current approach any genome that is able to exist in the cellular
space has some viable building block, what we have to do is to allow the probabil-
ity distribution of the non-deterministic rules to favor the reappearance of building
blocks of the parental genomes, which are defined in the newborn by its most re-
cently created cell and by the cell that is about to be created; this is accomplished
by equally distributing the-probability of the state transitions accordingly.

If there are no building blocks to be preserved, we just randomly choose any
of the parental genes present in the neighborhood. Because reproduction is not
prevented from taking place while the parental genomes are in movement, it may
be the case that no parental gene is present in a neighborhood (see transition 3 in
Appendix C for clarification). In this situation, the newborn gene to be created is
randomly chosen from all currently possible genes. It should be mentioned that, even
when there are building blocks to be preserved in the neighborhood. a gene can also
be created through the latter process, thus giving a minimal uniform bias towards
all possible g-states of the application concerned, equivalent to the maintenance of
a residual background mutation. The g*-state which appears in Appendix C refers
to a g-state created in the newborn in the way we have just described.

We can now return to the motivation for having the upward movement of the
body, as mentioned in subsection 2.37 According to the preceding paragraph, the
emphasis of reproduction is on the preservation of the parental building blocks. So,
if the organisms did not have the upward movement, the chance that a gene in the
newborn was created from a neighborhood with few or no parental genes would be
greater. The consequence would be that the rate of preservation of viable parental
gene configurations would be smaller. Then, as hinted at earlier, the exploration of
the search process would be more random, less oriented by the current state of the
search.

Note that the transition above is fairly complex by normal standards in cel-
lular automata applications. It should be clear, however, that our interest here is
not on the emergence of reproduction, but on what can be developed assuming
reproduction as a primitive we can rely on, and to a certain extent, manipulate.
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3. DISCUSSION
The cellular automaton described was implemented in a Sun workstation using
Cellsim 2.5, a public domain environment for cellular automata experiments[-]: the
current implementation supports up to 256 different states in the world. Although
the movement and the quiescent states are implemented as one state each, the
terminal and the gene states are defined as ranges of state values specified by the
user. The latter is important because it allows for the introduction of new features
in the framework without necessarily creating conflicts with the existing transition;
for example, it would be possible to add new kinds of heads, each of them with
distinctive properties (we return to this point later on in this Section). Another
feature of the implementation is that it is possible to control the non-determinism
of the transitions by means of a set of parameters whose values are decided by the
user; for example, it is possible to control the "amount" of each kind of movement,
the rate of background mutation, etc.

In running experiments, even though selection is killing off organisms all the
time, because the cellular space is finite sooner or later it gets overpopulated. As a
consequence, we experience a crowding effect which implies that, after some degree
of crowding is achieved, it becomes less likely that a reproduction involving long
parents will be able to p-roduce a similarly long offspring. The point is that less
and less quiescent cells become available and so, once reproduction starts, it is nor-
mally curbed by a moving organism that gets into the quiescent layer in which the
newborn is being created. But then the parental organisms start moving again, and
similarly the newborn; as soon as the newborn's last gene also moves, reproduction
necessarily stops, as mentioned earlier. The effect then is that, as the cellular space
gets more and more crowded, an increasing bias towards shorter length genomes
takes place.

Note however that the real agent of the bias is the transition (the last one in
Appendix C) that adds the tail to the newborn as soon as it moves; in other words,
there is an intrinsic selective pressure defined by the rule. It is worth observing
that the crowding effect is due to the global behavior of the automaton, which
"amplifies" the selective pressure already implicit in the rule. One way to minimize
such an effect is to allow a background selective process which would randomly set
cells to the quiescent state. This can be done by just adding a non-deterministic rule
that leads to quiescence with a small probability, which would have to be worked
out empirically, according to the domain concerned, as well as to the size of the
cellular space being used.

The studies on cellular automata dynamics presented in Langton1 3 suggest that,
as far as the emergence of computation and life in natural and artificial systeris is
concerned, the "interesting" dynamics lies between order and disorder. Although
the characterization of these dynamic regimes is not precise, there are some recur-
ring patterns that have been accepted as necessary, such as the existence of very

[']The C code that implements the automaton's state transitions is available from the author.
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long transients, dependence on the size of the cellular space, high (but not maxi-
mal) temporal and spatial correlation between the cell states, and the existence of
propagating structures. It happens that, provided that the overpopulation of the
cell space is avoided, all these features have been captured in the cellular automaton
described without having them as design constraints.

Although we are aware of the biological implausibility of the framework as
it stands, there are a number of features that can be easily altered or added so
that richer frameworks can be built, which could lead to models of some aspect
of biological life as well as testbeds for artificial life. For example, mating here
is, in principle, a matter of chance, not being driven by any characteristics of the
domain (such as fitness). However, if one wishes to impose some selective mating
among the organisms, it is enough to write a state transition, similar to the first
one in Appendix C, with the difference that it would contain the specific parental
genes that would allow reproduction to start. By placing this new transition before
the equivalent, more general one, in the actual code of the automaton, the former
would prevail over the latter without bringing any contradiction to the system's
behavior. It should be clear that this example is absolutely general for any other
aspect that one wishes to embed in the cellular automaton, and is indeed a central
issue on the "programmability" of the framework; all that is needed is to satisfy
the set of "hardwired" constraints defined by the existing state transitions and the
kinds of states they involve. We refer to this important feature as the addition of
instantiated transitions.

Through the same kind of reasoning, it would be very simple to allow the
terminal states to be represented by distinct head and tail states. It is possible to
go even further so as to allow the existence of different kinds of heads, which could
be associated with the feature of specialization towards either of the directions
of movement. A natural consequence would then be the addition of instantiated
transitions to start reproduction so as to allow the movement specialization to be
passed on to the newborn, according to various possible schemes, such as that the
newborn of parents specialized in moving in the same direction would be more likely
to move in that direction.

As far as reproduction is concerned, one could think of adding instantiated tran-
sitions that would change the distribfition of probability of the non-deterministic
transition rules so as to change the current bias towards the formation of building
blocks according to some weighted, domain-dependent function of the number of
building blocks that each candidate state defines. A trivial example would be just
a weighted distribution according to the number of building blocks associated to
each candidate state.
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4. CONCLUSIONS AND PROSPECTS
The primary intention of this paper is to show a particular, non-deterministic cel-
lular automaton that is able to embed genetic search. We pointed out that this
automaton is just a member of a family, and also showed how its space of possible
extensions can be explored. The framework provides flexibility to embed a number
of features that could be used primarily for artificial-life experiments, and perhaps,
also for some aspects of biological modeling. Then we showed that cellular automata
can provide a distinctive framework to embed genetic search, which is meant here
as a technique to explore a search space by means of non-deterministic mechanisms
that provide variability and selection regarding the points of the space, in sucL a
way that viable building blocks are created and built upon. As far as genetic search
is concerned, the discussions were general, no attempt having been made to discuss
any particular application in detail.

We stress that the possibility of defining the automaton in terms of the four
primitive, "hard wired" concept states was an essentiai achievement, since the ge-
netic search becomes dependent on this small set of state categories, ultimately
rendering the programmability of the framework fairly simple, as we tried to show.
As far as the general issue of cellular automata to embed genetic search is concerned,
further developments cain-e directed to any aspect of their definition, bearing in
mind for example, that only one (topological) species can exist in the automaton
described.

As far as the artificial-life world embedded in the automaton is concerned, its
major drawback has to do with the provision of interaction between organisms,
which is currently very poor. Note that the only kinds of interaction provided are
reproduction, and the ones derived from movement, as when an organism is in the
way of another. However, a neat solution for this problem exists and is currently
being worked out.[16 The definition of regions in the world composed of a new class
of environmental E-states that could be "touched" by the organisms and resulting
in mutual state modification would certainly solve the problem. The interactions
among the organisms would then be made through the environmental states with
virtually unbounded richness.

Another extension that is also being worked out refers to the introduction of the
concept of an intermediate state, which would allow the organism to have two halves:
the first half, representing the genotype as discussed in this paper, and the second
half, representing the phenotype. The idea is that a newborn will be subjected to
a developmental phase before it is fully created (in an egg-like fashion). So, after
the reproductive process has created the newborn with only its genotype, as soon
as its top parent leaves, a developmental process starts leading to the creation of
the second half, where the genotype will be expressed.

The use of genetic search in cellular automata demands that a question being
addressed be subjected to a formulation based on local constraints. This may be

•lThis is one of the topics in a forthcoming paper.4



402 Pedro Paulo Balbi de Oliveira

difficult in a number of situations. Another source of difficulty that might even
preclude particular applications is that the sort of framework we discussed usually
demands a great deal of computational power.

The clear concepts of space and time that cellular automata embed, the strong,
even fanciful sense of realism they get across, and their ability to support unification
between operand and operator are just some of features they intrinsically carry
with them, which are desired in artificial-life studies in general, as discussed in
Langton."2 As for aspects particularly relevant to genetic search, we can identify
the fact that the state evolution of a cellular automaton according to local nonlinear
rules provides a neat way to model phenotypic expression; the issue here is that
there is a great deal of work done in cellular automata so that we can avoid an
ad hoc dynamics, which would be unsound from a theoretical point of view, and
whose analysis might be very difficult to perform. In addition, because within the
context of cellular automata there is this well-defined concept of an underlying
physics, it becomes natural to think of a unified process supporting the existence of
both genotype and phenotype. A step further is the actual unification of evolution,
development, and interactions of the organisms with their environment, which is in
fact the direction we are currently pursuing.

We have tried to make the point about the applicability of the framework in
addressing specific problems-in artificial life; the question remains though, as to the
effectiveness of the approach, mainly because the latter is beyond the scope of this
paper. I believe however, that the most appropriate kinds of questions that should
be addressed from the perspective we introduced have to do with using the organ-
isms as probes into the emergence and self-organization of evolving systems that
are not subjected to solving particular problems. What we have in mind here is the
notion that in nature there are no problems being solved, but evolutionary paths
being followed according to the constraints existing at each time (see Varela17 ). I
think that such an appeal comes from two sources: first, the fact that cellular au-
tomata constitute a paradigmatic model for emergence, and second, the increasing
support that the role of self-organization in the origins of order in evolution[71 has
received recently, for example, as in Kauffman. 9

The exaptationist claim for looking at evolution from the point of view of
constraint satisfaction clearly fits into the picture formed by the issues above. Now,
even though one could also identify those ideas with adaptationism, the constraint
that locality implies for selection in cellular automata seems to be much more in
tune with the exaptationist standpoint. One might argue however, that since the
notion of fitness function can certainly be interpreted either as a constraint to be
satisfied, or as a specification of an evolutionary path to be followed, adaptationism
and exaptationism are equivalent from an implementational point of view, and, as a
consequence, the difference between them is "just" a matter of point of view of the
experimenter. Although agreeing with the premises, I reject the conclusion drawn
from it. I believe that the latter is exactly the crucial distinction between the two: if
the issue at stake is self-organization, where the emphasis is on the ongoing process

[7 lWe could even say, order in spite of selection as contrasted to due to it.
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rather than on the endpoint reached, the least biased and consequently, the most
natural standpoint to take seems to be exaptationism. It is interesting to observe
that. although this point of view is shared among many current evolutionists, it
does not seem to be the case for many practitioners, say, in the genetic algorithm
community, where adaptationism clearly prevails.
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APPENDIX
These Appendices present the complete list of state transition for the cellular

automaton discussed. Unless otherwise stated, all the rules not shown are supposed
to preserve the state of the centre cell (this applies in particular to the quiescent
rule, which preserves a 0-state when all the surrounding cells are also 0). For all
the Appendices the following holds:

"* The symbol # is a don't care referring to either of the following states: T, y, or
0.

"* When g/ T appears in a neighborhood, it means that the corresponding cell
can take on either of the two states. In addition, if the state transition also
leads to g/T, the new state will follow the one that actually appears in the
neighborhood.

"* When more than one g-state appears in the neighborhood, no distinction is
made between them, independently of their being equal or different to each
other. Any case of ambiguity about which g-state of the neighborhood the
transition leads to, is solved by subscripting the g-state by its geographic loca-
tion in the neighborhood (according to Figure 1). Equivalent rationale applies
for the neighborhoods which have more than one cell in a T-state or in a state
represented by #.
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"* The number of a transition we sometimes mention in the text, refers to its
position from the left to the right, and from the top to the bottom.

d
"* The transitions characterized by the symbol => are non-deterministic: the ones

with =. are deterministic.
"* The neighborhoods showing both T-states of the same organism are due to the

smallest well formed organism which has 3 cells.

A. STATE TRANSITIONS FOR MOVEMENT

0 0 100 0 00 - 0 1mi
0 T •o/m 000 o 0/ 0 m T o 0
0 /T o0 T /0o 0 0/T

0 M 0 j4 $00 1# # 0 140
Sm T m -T 0 0 0 • 0 0 M 0 0
000/T 0 m T m0 Tl T

0 0 0 001 0 0 0 1T
0 in0 Om 0M T, •'F• "m T 0 M0
0 IT #F 0Tb #1 0IT

# #1 # # 0 # # # #
Sm m #b, m m 0 _ gbýTb' Am m9r •9r
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g MT, T, 0 mT, Tg mg# 7:n
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# #00T # 0o1/m # #I0/T
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?n $* # 0i 0 # o #

0 01 # zn0 LI #

# 0 /rn - f~

0 # - ##

1n oIr M0)rn

# # # 0 g g°lT g/ F

y/T 7n 0 #

0 glgT z~0~0 0 O'/m y i 0 =>

# # I# 0-T10 0OTbO0

0 T 0 =0
# #1

B. STATE TRANSITIONS FOR SELECTION

0 00 $0 0 010 0 0 1#

0 g0 0'0 0 g # 0 T 0 0

0 0 0 0 0 0 # 01T 0
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C. STATE TRANSITIONS FOR REPRODUCTION

"* The state g" means a 9-state that is non-deterministically generated according
to the explanation in subsection 2.5.

"* The index min used in some of the terminal states is just an implementation
detail that defines the default terminal state used.

0~~~~~ 0~ gg./ /J -# ;I7

000 -6-Tt/Tb , '/0 0 t 0 0 -

oT6 g T gm # $0 gjn f

# T, 0 #g go # T, 10o
9 0 0 4 g/ITt g 0 ~g/T g 0 0 ) -I/J
#O/m $0 Tb 0 /_0 Tý,O

# Tt 10 01T 0 0 # g/m $0
g 0 0 * Tt - g 0 0 • Tb 9 0 4,7T,,..
# 0 0 $0 Tb 0 # 0 0

01T 0 1 0 # / m 0 W 0 in

9 0 0 'g//Tmn # 9 0 => 0 #

$ g/m # # # m
0 T 0 0 g M 0 =m mTmn
0 T g###
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Some Mathematical Results on the NK Model

The NK model is a simple biological model: however, it is hard to analyze
mathematically in detail. except by simulation. In this paper, a relation between
the NK model and the spin model is given in an explicit form. Furthermore, by
calculating the correlation W(i7) and IV(0'), a rigorous meaning of the ruggedness
of the landscape is presented in a suitable assumption.

1. INTRODUCTION
We will consider the NK model which was introduced by Kauffman.-2 First, we
present the rigorous definition of the NK model. Let N be a positive integer and
K be a non-negative integer. The NK model is based on only two alleles at each of
the N genetic loci. In general, the number of alleles at each locus can be extended
AE{f2, 3, -}T

Let Y7 denote a configuration of genotype, i.e., r = (Y7(1), .- r (N)) with r7(i) E
{O, 11 (i = 1,-.., N). X = {0, 1}N is a configuration space of the genotype with N
loci. Each genetic locus, i, has epistatic interactions from K other loci, {II, iK-.
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The configuration space of the above 2 K+1 contributions of alleles is defined by
XK+1 = {0, 1 }K+1. It is noted that 0 < K < N - 1.

The fitness contribution of each locus, W,ýK)(77(i), 77(i1 ), .,(iK)), is specified
by the configuration of the alleles of the K + 1 loci, A,(K) {i, ii,".ig}

Remark that {wvg)(?l(i), i7(iz), .. ,/(i*)) " z= 1, .- N, (r7(l) I E A(K)) E
XK+1} is the collection of N x 2 K+l random values. Then, for each genotype q1 E X.
the fitness of genotype, W(i7 ), is defined as the average of the fitness contribution
of each locus;

W(77) =7(0)
s= 1

The above-mentioned model is called the NK model.
The one-mutant neighbor 77j E X(j = 1,. .- , N) with respect to 7 E X is given

by; qj(i) = 77(i) if i $ j and 7Tj(j) = 1 - q(j).
In this paper, Section 2 will give a relation between the NK model and the

spin model. Next, we will obtain a rigorous meaning of the ruggedness of fitness
landscape of the NK model in Section 3. Finally, Section 4 is devoted to summary
and discussions.

2. RELATION BETWEEN THE NK MODEL AND THE SPIN
MODEL

Let Q = {-1, 1}N and QK+1 = {1_, 1}K+I. Following Palmer,' for each spin con-
figuration S E Q, we define the fitness function, F(S), as a sum of N contributions.
with the ith contribution depending on S(i) and K other S(j)'s;

N
F(S) FS (K I (S(i) ISUil)''S(iK)) (2.1)

s=1

Noting that from the following basic relation

S(i) = 2r(i) - 1 (i = 1,.. ,N), (2.2)

it is easily obtained
F(S) = W(q), (2.3a)

and

F(K) (s(i), S(ii),'" S(iK)) = .(K) (77(i), 770 ),'0 , 7(i:))" (2.3b)

In a similar fashion, the one-mutant neighbor Sj E Q(j E { 1,.-, NJ) with respect
to S E 0 is given by; Sj(i) = S(i) if i $ j and Sj(j) = -S(j).

Each F,(K)(S(i),S(i1),.. .,S(iK)) takes 2 K+1 values, then we have the next
representation of it by simple calculation.
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THEOREM 2.1 In the NK model,

F:)(S( i), S( il),.. S( iK) )

K

+ J ) (i ... i )...S(i,+)+ ...

"Er i i,r PlS~P , P

pi ,-.,pE{O, ,K},(pi ,..Pr )distinct
+jiK)

K+ I (i0o,ii, ,iK)S(io)S(il) "S(iK)

where i0 = i and
j(K),. **

s,r tzm ,'" ip')=

12K+1 E S(im) .. " (ip')Fi(K)(.(i)' S(il )' .... "(iK ))

(2.4)

Thena (K)(i ' i.. ) may be considered as a random coefficient of r points

correlation of {S(ip,), ,S(ip,)}. For example, we consider K = 1. In this case,

foreach i= 1,..-,N and i j, we can write

F(i') (S(i),S(j)) = J},')(i) + Jill)(i)S(i) + Jýl)(j)S(j) + J",(ij)S(i)S(j),

where
g• o(i) =22• F( Si )S)'

J•,l) Wi =2-• E (i)F'('I) ((i)'SJ)

i= 1,(i) )j) 1

Remark that the relation (2.4) implies that ir(K)j'' ip,) and J,•)(i, .... ,

ip.) are independent for any distinct pair (r, m), even if N x 2K+1{Fi(K)

(S(i), S(i),.., S(iK))} random variables are independent, identically distributed
(I1D).
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3. RUGGED LANDSCAPE OF THE NK MODEL
In this section, we show a rigorous result corresponding to the ruggedness of the
fitness landscape.

THEOREM 3.1 Assume that N x 2K+1{F(K)(S(i),S(i 1 ),... ,S(iK)) " = I ,..., N,
(S(i),S(il), .. ,S(iK)) E QK+1} random variables are lID with mean Tn(F) and
variance v(F). Then

E[F(S)F(S')] = N2m(F)2 + {N - (K + 1)}v(F), (3.1)

for any S, S' e S, where S' is one-mutant neighbor of S.

PROOF Since { F(K)(S(i),S(i),...,S(iK))•i = 1,-'-,N,((i),(i 1 ),.
S(iK)) E QK+1 } is a collection of IID random variables, we have

E[F(S)2] =E_= F(K)(S A(K))}2]

N

=ZE ýFi(K)(S: _AiK))]

+ ZE fK~sA 1 (K))] E [F((K)(S
i~ej

=Nv(F) + N 2m(F) 2 .

where F(K)(s Ai(K)) = Fi(K)(S(i), S(iI),. , S(iK)) for i ..... V.

On the other hand, there is an 1 E {1,- .,N} such that S' = Si. Then, in a
similar fashion, we get

E [{F(S') - F(S)}2]

= E [{ZN={F:(K)(SI:Al(K)) - F(K) (5:AK)

E tFi(K) (SI A(K)) _ Fi(K)(S: A 1(K)) 1}2

i:IEA,(K)

+ E [ F(K) (S: Az (K)) -Fi(K) (S: j(K))J
i,j:i0j,IEA,(KR),A,(K)

xE [F,((Aj(K.)) - F}K(SA -(K))j

= 2(K + 1)v(F).
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Therefore,

E[F(S')F(S)] =-{E[F(S')2] + E[F(S)2 ] - E[{F(S') - F(S)}1]1
2
= N 2m(F))2 + {N - (AT + I)}v(F).

Note that Theorem 3.1 is also obtained by using Theorem 2.1; however, the proof
is more complicated than the above one.

Furthermore, the following result is easily derived from relations (2.2) and (2.3).
and Theorem 3.1.

COROLLARY 3.2 Assume that N x 2 K+1{W K (K)(q(i),(q(il),. . .q(i)) i
1,.-., N, (r7(i),r7(il),-.., iJ(iK)) E XK+1I random variables are IliD with mean
m(W)(= -Lin(F)) and variance t,(WV) = --- t,(F)). Then

,]= m(W) 2 + - (K + 1)
N 2  ,(1). (3.2)

for any 7q, i1 E X, where 77/ is one-mutant neighbor of r1.

For example, Ai(K) +--{i - 1,..,i...,i+r}with 1+ r = K,1 > O.r > 0 and
periodic boundary condition is one of the typical cases of above-mentioned results.

Equation (3.2) implies that K increases from 0 to N - 1, then the correla-
tion of W(iy/) and W(r/) decreases monotonically. And it corresponds to the fol-
lowing Kauffmans statement2 : Increasing the richness of epistatic interactions, K,
increases the ruggedness of fitness landscape. In particular, when K = N - 1. Eq.
(3.2) is equal to

E[W(71,)W(r/)] = E[W(i71)]E[W(rj)]. (3.3)

Hence, it shows that {W(77) : r7 E X} is the collection of uncorrelated random
variables.

4. SUMMARY AND DISCUSSIONS
First, this paper presented rigorous definition of the NK model. Next, by using the
definition of it, we got the relation between the NK model and the spin model. This
result suggests that the NK model is more difficult than the spin model to analyze
mathematically. Finally, in the simple case, we showed that if K increases from 0
to N - 1, then the ruggedness of fitness landscape increases monotonically by the
direct computation of E[W(i1 )W(ti)]. The NKC model3 is an extended model of the
NK model in order to study coevolutionary processes. In the NKC model, rigorous
clarification of relation between ruggedness of fitness landscape and the edge of
chaos4 is a future interesting problem. In connection with it, various problems of
the NK/NKC models are discussed in Ahouse et al.1
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Complex Dynamics of Flagella

A flagellum swimming in a viscous medium is modeled by a one-dimensional
array of opposed active elements. The resultant model is mathematically described
by a fourth-order partial differential equation. In the model, the active element is
characterized by both hysteresis and excitability with respect to the sliding motion
between the filaments. Hysteresis means that the element is either turned "on" or
"off," depending on the history of the sliding motion. Excitability is defined when
active sliding is triggered by passive sliding over a threshold. The combination
of these properties leads to a spatio-temporal sliding pattern within the flagellar
system, which in turn causes a bending pattern. Numerical simulations for the
present model reveal that (i) intrinsic instability arises from this model system,
(ii) the direction of propagating waves is reversed, (iii) such direction-reversing
propagating waves are replaced by unidirectional waves after the insertion of a
passive region at one end, and (iv) the increase in the system size leads to chaotic
behavior.
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1 2 3

FIGURE 1 Propagating waves
typical of "normal" flagella.
Successive waves (1 -. 3)
propagate toward the tip of a
flagellum as indicated by the arrow.

1. INTRODUCTION
Flagella arc hair-like projections which are found on eukaryotic cells.[l] Their pri-
mary function is to move single cells through a fluid for locomotion. Most flagella
show regular base-to-tip bend propagation"1 as illustrated inFigure 1. However,
others show quite complex dynamical behavior such as the reversal of the direc-
tion of propagating waves, 10° 16' 1 collision of waves which travel in the opposite
directions,1,15 intermittent movements with stopping and starting transients, 9 and
co-existence of different Waves on different sections of a long insect flagellum. 26

Surprisingly, there is no essential difference in the structure of these flagella. The
problem is, thus, to clarify the underlying mechanism leading to various modes of
complex behavior. Although many theoretical studies have been performed, they
have focused on the regular base-to-tip bend propagation only.'-16 No attempt has
been made to understand the potentially important complex behavior.

In the present paper, I will examine the above problem based on recent theo-
retical studies.1 7-21

2. THE SLIDING FILAMENT MECHANISM
It is now established that bending waves in flagella are caused by the sliding filament
mechanism. 31,27'2, Although actual flagella have nine outer microtubules, 32 they
are approximated by a two-filament system on the assumption that bending occurs
in a single plane. As illustrated in Figure 2, bending does not occur when any
part of the filaments slides equally (Figure 2(B)). If, however, sliding is restricted
on local regions, bending is generated between the sliding and nonsliding region
(Figure 2(C)). For such bending to be reversed, the direction of sliding must be
reversed (Figure 2(D)). The flagellar system is, thus, modelled by a one-dimensional
array of opposed active elements, each of which has its own "preferred" direction.

[MConfusingly, bacterial flagella share the same name as those of eukaryotes. They are, however,
completely different in structure and function.
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(A)

(B) * *• • •

(C)

(D)

FIGURE 2 Diagrams showing how sliding motion causes bending motion in a two-
filament system. (A) The flagellum is straight and no bending occurs without sliding
motion. (B) No bending is initiated when sliding occurs equally throughout the length
of the flagellum. (C) If sliding is localized, bending occurs between the sliding and
nonsliding regions. (D) When the direction of sliding is reversed, the flagellum bends
in the direction opposite to the previous direction as shown in (C). The arrows indicate
the directions of relative sliding.
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3. DERIVATION OF THE BASIC EQUATION
An arc length, s, is introduced to measure the distance along the flagellum from
the base. Then, the sliding displacement, a, is defined as a function of time, t. and
space, s. Under the condition that sliding is restricted on local regions, we can
assume that the sliding displacement, a, is proportional to the bending angle. 0.
between a horizontal axis and a line tangent to the flagellum. Once ao is specified,
we can easily obtain the flagellar shape by simple integration (cf. Figure 4). For
convenience, or is defined as a dimensionless sliding displacement and is allowed to
vary between 0 and 1.

The moment-balance equation for a flagellum is written by

MV + Ms =ME'= 0 (1)

where Mv, MS, and ME are the external viscous, internal shear, and internal elastic
moments, respectively. To obtain the basic equation, let us specify each moment in
Eq. (1).

First, the external viscous moment, A/fv, is given by the external viscous force, 2

F ,v : 
1 MMs + ý O. (2)
Os

The external viscous force, FN, in turn obeys the following force-balance equation12 :

OFNS+ CVN= 0 (3)
Os

where CN and VN are normal components of the external viscous drag coefficient
and the velocity, respectively. In Eqs. (2) and (3), inertial terms are ignored because
the Reynolds number of flagella is extremely small. The normal component of the
velocity, VN, is, then, specified under the condition of continuation:

OVN do' (4)
Os Ot"

In Eqs. (3) and (4), translational movements of the flagellum as a whole are ne-
glected based on the small-amplitude assumption. 26 This simplifies the algebra and
the essential results should not be affected.2

Secondly, the internal shear moment, Ms, is defined by the internal shear force, 3

S:
-Ms S. (5)

Os

Lastly, the internal elastic moment, ME,jis proportional to the curvature:

ME = EB-ac (6)
Os
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FIGURE 3 The cubic force-distance and hysteresis switching functions. (A) F1 and
F11 are represented by solid -and dotted lines, respectively. They are defined as a
function of the sliding displacement, o. The force constant, Q, is taken as 250 pN.
(B) The binary function is defined in the region 0.2 < o, < 0.8. n/ and nfl give either
the discrete values 0 or 1 under the condition of ni + nn = 1.

where EB is the bending resistance.
Combining the above equations, we obtain the following basic equation:

cN 9 + O + o. (7)

4. THE MODEL
The problem is how to specify the internal shear force, S, in such a way that Eq. (7)
gives rise to various modes of wave phenomena. In the present model, the internal
shear force, S, is defined as follows:

S =Flni + Fjjnjj - Ke(U - 0.5) - -f (8a)

F1 =Q(a - 0.1)(o- 0.3)(1 - o) (8b)

F11 =Q(a - 0.9)(a - 0.7)(-o) (8c)

1 0 I s (if initially ni = 0 for o > 0.9) (8d)0 0 < S _< 0.8
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{ <<08 (if initially nj = 1 for a < 0.8) (8e)ni = U 0.8<s<' 1

where F1 and F1 1 are two opposing force-distance functions, nj and njj are two
switching functions,[21 Ke is the force constant of the passive elastic component,
and -y is the internal viscous resistance. In the following simulations, -Y is taken to
be zero except for Section 5.1 because it is negligible in experimental conditions. 2

Excitability is represented by Eqs. (8b) and (8c), where Q is their force constant.
See Figure 3(A) for details. Hysteresis is represented by Eqs. (8d) and (8e). To avoid
the competition between the two opposi- . lements. it is assumed that ni+nil = 1.
See Figure 3(B) for details.

Equations (7) and (8) are solved on the assumption that moments and forces
vanish at both ends. These free-end boundary conditions are:

6
a2 

0
-as L=,L OS3= 0 (9)

where L is a length of a model system.

5. SIMULATION RESULTS
5.1 INTRINSIC INSTABILITY

Although the internal viscous resistance, y, has been considered to be negligible.,
large values of -y are empirically introduced to stabilize the wavelength of simulated
waves in some models.5' 2 ' This section investigates the effect of changing the ratio
between the internal viscous resistance, 7, and the external viscous drag coefficient,
CN, on the stability of solutions to Eqs. (7) and (8). For this purpose, three sets of
values of y and CN are used: (i) 7 = 50 pNms/24 nm, CN = 0; (ii) y = 50 pNms/24
nm, CN = 0.5 pNms/pm 2 ; and (iii) 7 = 0, CN = 5 pNms/pm2. A 50-tMm-long model
flagellum is set to be homogeneous alpng the length of the system except that forced
periodic oscillations are applied at one end in order to generate propagating waves.

Figure 4 shows the simulation results. In each case, the sliding displacement,
a, is plotted against space, s, in the left, and the corresponding bending pattern is
shown in the right. The time interval between the two successive patterns is 5 Ms.
As the ratio of y/CN is decreased, the sliding pattern is deformed in two ways (see
left panels) though its corresponding bending pattern does not change as much

[2]Subscripts I and 11 indicate two subsystems I and II, respectively.
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(A)

(B)

(C)

FIGURE 4 The sliding displacement, a, as a function of the space, s, shown in the
left, and the corresponding bending pattern shown in the right. The model flagellum is
set to be homogeneous (Q = 250 pN and Ke = 1 pN/24 nm for 0 < s < 50 /m)
except that forced oscillations are applied. The period of the oscillations is 60 ms.
The flagellar shapes in the (x, y) coordinate are obtained by: z(s) = fo cos(" -
0.5)ds, y(s) = fo sin(a - 0.5)ds. Two successive patterns in each panel are
shown at 5-ms time intervals. Parameters are: (A) -y = 50 pNms/24 nm, CN = 0;
(B) 3y = 50 pNms/24 nm, CN = 0.5 pNmslpm2 ; and (C) y = 0, CN = 5 pNms/pm 2.

(see right panels). First, the plateau phases of the sliding pattern become spiky at
local regions. Since spiky regions are localized, they are caused by the second-order
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space derivative term in Eq. (7). Second, the plateau phases are globally inclined.
These global changes result from long-range interactions which are described by
the fourth-order space derivative term in Eq. (7).

The system described by Eq. (7) is subjected to intrinsic instability when Y = 0
and CN = 5 pNms/pm 2 (see Figure 4(C)). In the following simulations, solutions
to Eqs. (7) and (8) are obtained under these conditions as they correspond to the
experimental conditions. 21 Because of the instability inherent in this model system,
the dynamical behavior must be studied for a long time. For this purpose, two
types of representations are used. One is the energy dissipation which is obtained
by integrating (O(0/(t) 2 with respect to space, s. This simply indicates the intrinsic
instability. The other is a space-time diagram of a in which the regions for ar > 0.5
are plotted by bars against space, s, at 5-ms time intervals. This plot reflects the
spatio-temporal sliding pattern.

5.2 REVERSAL OF PROPAGATING WAVES

A 50-pm-long model flagellum has a homogeneous structure, in which opposed
active elements are arranged along the system from one end to the other. This
model system is initially set to be straight except for the one end (i.e., the left
end). Such an initial bend-is developed and propagates toward the other end (i.e.,
the right end).

Figure 5(A) shows the energy dissipation. A number of spiky patterns exist
which correspond to intrinsic instability. There are two minima in the time course
of the energy dissipation: one is at t = 1120 mis and the other is at t = 2340 Ms.
Figure 5(B) shows the space-time diagram of o,. Waves which propagate toward
the right are represented by successive bars moving ip the rightward direction. As
indicated by the first arrow at t = 1120 ms, the direction of propagating waves
is reversed. This reversal occurs as follows. The trailing edge of the original wave
first slows down, while the leading edge does not significantly change its propagat-
ing velocity. Then, the wave changes its form and the deformed part sends out a
wave which propagates in the direction opposite to the original direction (i.e., wave
splitting' 9 ). This new wave collides with the subsequent wave. Since the new wave
is large enough, it can destroy the other. As a result, there are only waves which
propagate toward the left. The next reversal of these propagating waves occurs at
t = 2340 ms as indicated by the second arrow.

If two waves which propagate in the opposite directions are identical, they pass
through on collision.21 Non-annihilating propagating waves of this kind are known
as solitons. Non-annihilating waves are also observed in real flagella.'115
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FIGURE 5 The energy dissipation (A) and space-time diagram of a (B). The flagellum
is set to be homogeneous. Parameters are: -y = 0, CN = 5 pNms/pM2 Q = 250 pN
and K, = I pNI24 nm for 0 < s < 50 pm. Simulation results are shown up to
t = 3000 ins.
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FIGURE 6 The energy dissipation (A) and space~-time diagram of o- (13). The flagellum
is set to be inhomogeneous. Parameters are: -f = 0, CN = 5 pNms/pm2, Q = 250 pN
and K, = 50 pNI24 nm for s = 1 pm, Q = 250 pN and Ke = I pNI24 nm for
1 < s < 40 pm, and Q =0 and K, = 1 pN/24 nm for 40 < s < 50 Pm. Simulation
results are shown up to t 2000 ins.
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5.3 INSERTION OF PASSIVE REGION AT ONE END

The model system examined in the previous section demonstrated the reversal of
propagating waves and soliton-like behavior. The problem still remaining is how to
demonstrate unidirectional waves typical of "normal" flagella. To solve this problem,
let us consider the fine structure of sea urchin sperm flagella which show the regular
waves. These flagell are 41-43 pm long. Each flagellum has an inert terminal piece
of 5-8 pm long at the distal end26 and has a basal plate at the basal end.30 Based
on these observations, opposed active elements are removed from the distal 10 Pm
of the 50-pm-long model flagellum, and a strong elastic component is placed at the
base. Mathematically, this situation is modeled when Q = 0 for 40 < s < 50 Pm
and Ke = 50pN/24 nm for s = 1 pm.

Figure 6(A) shows the energy dissipation. The peaks of spiky patterns are
reduced extensively. The passive terminal region works like a bulk system which
can absorb the instability arising from the active region. Figure 6(B) shows the
space-time diagram of a. As a result of the reduction of the intrinsic instability,
only unidirectional propagating waves are demonstrated.

5.4 INCREASE IN SYSTEM SIZE

The model system is set to be homogeneous again, but its length is set to be
100 pm. A single propagating wave is initially present in the system. It propagates
to the right and two waves are reflected at the right end based on the wave split-
ting mechanism (see Section 5.2). The first one propagates slowly, wihile the second
propagates quickly. Since the system size is doubled, the average value of the energy
dissipation is almost doubled as indicated by Figure 7(A). Figure 7(B) shows the
space-time diagram of a. As indicated by the first arrow, the second wave collides
with the first one at t = 425 ms. After the collision, they continue to propagate.
Collision of two waves which propagate in the same direction is experimentally ob-
served. Following the collision, the system shows unidirectional propagating waves
for a while. However, as indicated by the second arrow, the spatio-temporal sliding
pattern begins to be chaotic at t = 1260 ms. There are different sections which show
quite different wave parameters such as the wavelengths and wave frequencies. This
chaotic behavior may correspond to the wave patterns observed in a !ong insect
flagellum.

26

6. DISCUSSION
The most important problem is how to specify the internal shear force, S, in such
a way that Eq. (7) gives rise to various types of wave phenomena. In the present
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paper, the shear force, S, was defined as a function of o. under the condition of
-y 0 in Eq. (8a) as in Sections 5.2-5.4:

S = S(o). (10)
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FIGURE 7 The energy dissipation (A) and space-time diagram of or (B). The flagellum
is set to be homogeneous. Parameters are: 7 = 0, CN = 5 pNms/pm 2 , Q = 250 pN
and Ke = 1 pN/24 nm for 0 < s < 100 pm. Simulation results are shown up to
t = 2000 ms.
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It is very difficult to solve the above problem because the system described by
Eqs. (7) and (10) is subjected to the intrinsic instability. To understand this siLua-
tion, let us consider a simple case where the internal shear force, S, is proportional
to the sliding displacement, oa. Then, the second term in Eq. (7) corresponds to
the negative diffusion leading to destabilization, while the third term causes stabi-
lization. The competition between the two properties leads to intrinsic instability.
Furthermore, there are only even powers of the space derivatives. This means that
symmetry holds with respect to space, s; that is, the equation is invariant under
the spatial inversion s - -s. As a result, both distally propagating and proximally
propagating waves were equally developed.

To get unidirectional waves, the structural asymmetry such as the terminal
piece without active elements was taken into account. The passive region absorbed
instability arising from the active region. The passive region in isolation does not
show any function. But it can work to control orders when it coexists with the
active region. By analogy with this model behavior, it is important to study any
network systems (e.g., gene network, immune network, and neural network) which
involve non-active elements.

Besides the present model, two other types of models have been proposed
in order to account for normal base-to-tip bend propagation: curvature-controlled
modelss- 16 and self-oscillatory models. 5 Curvature-controlled models assume that
the shear force, S, is defined as a function of the curvature, O>a/Os:

S=S ao,(11)(TS) /1,
To understand the meaning of Eq. (11), let us consider a simple case that the shear
force, S, is proportional to the curvature, Oa/Os. Then Eq. (7) does not hold the
symmetry with respect to space, s, because of the presence of an odd power of
the space derivative. As a result, either distally or proximally propagating waves
are present depending on the sign of the proportionality constant. However, once
the sign of the constant is specified, these models cannot account for two waves
propagating in the opposite directions. Furthermore, there is no direct experimental
evidence which supports Eq. (11).

Self-oscillatory models assume high internal viscosity, 7, to get unidirectional
propagating waves. Here, the shear force, 5, is conventionally represented as follows:

0o
S = S- C---. (12)49t

Let us consider the extreme case of CN = 0. Equation (7) can be reduced to the
following reaction-diffusion equation:

a-•t = EB -w2 + S. (13)

In this case, it is easy to get unidirectional propagating waves if an appropriate
pace-maker is placed at one end of the system. However, the internal viscosity, 7, is
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generally considered to be negligible, which is inconsistent with Eq. (12). It is now
clear that any model except for the present model is based on ad hoc assumptions
to account for regular wave phenomena.

Intrinsic instability has not been discussed in the field of cellular motility. One
reason for this is that theoreticians have focused on the regular behavior though
there are experimental observations for irregular modes of wave phenomena. An-
other reason is that it is very difficult to grasp the deformed patterns from the flag-
ellar shape only (see right panels of Figure 4). For these reasons, the observed irreg-
ularity has been ascribed to random noise. Equations similar to Eq. (7) have been
discussed in different physical contexts. For example, the Kuramoto-Sivashinsky
equation17'29 '18 and the generalized reactto n-diffusion equation25 have this class of
intrinsic instability. Numerical simulations for these equations show complex dy-
namics. Despite the diversity of dynamical systems, it is very interesting to notice
that there may be a common principle behind them. I hope that the present study
stimulates the investigation of such a principle.
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Cellular Automata with Non-Uniform Rules:
An Illustration of Kauffman's Boolean Network
Theory

INTRODUCTION
Kauffman 6 ,7 '8 ,9 introduced random Boolean networks in order to study the phe-
nomenon that every multi-cellular organism has a (limited) number of different cell
types, although the genetic material in all cells is identical. Each node in the net-
work is a binary automaton, which can be either on or off (true or false). Every
automaton in the network is connected to K other automata. An automaton will
change its state according to a transition function, which is based upon the states
of the connected automata. If K = 2, there exist 2(22)(= 16) different transition
functions, each determining in a different way the effect of the two connected au-
tomata. Out of these 2( 2 K) possible transition rules, one rule is randomly assigned
to every automaton in the network. For the rest of its "lifetime," the automaton
will obey this transition rule. The assignment of the transition rules is done by
filling in a look-up table of all possible input configurations with ones and zeros;
every position in this table will have a probability p to become one, and (1 - p)

1991 Lectures in Complex Systems, SFI Studies in the Sciences of Complexity,
Lect. Vol. IV, Eds. L. Nadel & D. Stein, Addison-Wesley, 1992 431
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to become zero (usually p = 0.5). The model constructed in this way models the
assumed network of interacting genes in a cell.

These Boolean networks have been analyzed for different K and p, and they
show interesting behavior. 6,'22'23, 4 They possess a limited number of attractors,
but also exhibit chaotic behavior if K > 2 (at p = 0.5). The set of attractors
in a Boolean network could be linked to the set of cell types, by assuming that
epistatic interactions between genes (e.g., gene regulation) do not allow all possible
configurations, but rather force the network of connected genes to a strongly limited
number of patterns of genetic activity.

Kauffman's Boolean networks have been further analyzed by using the cellu-
lar automaton formalism, thus putting local, spatial constraints upon the interact-
ions. 2'3,,4 ,5 14' 15 ,16,17,18 These studies mainly focussed upon the phase transition be-
tween frozen and chaotic behavior, damage spreading, and fractal dimension in
relation to the percolation threshold.2 5" 4'16'17 '18 In most cases the parameter p
has been used in order to study these phenomena. For two-dimensional cellular
automata and K = 4, the transition between fixed-point or periodic behavior and
chaotic behavior is at approximately p = 0.31. Above this critical p chaos will arise,
and damage does not remain localized.' 7

The aim of this paper is to exploit the cellular automaton formalism to illustrate
the main results of Kauffman's Boolean network theory and to show the beauty
of the patterns that arise. We believe that the work on this subject is lacking a
visualization of the rich dynamics of these networks. So, we will show the dynamics
of one- and two-dimensional cellular automata with non-uniform rules.

The patterns of behavior of two-dimensional cellular automata can be difficult
to grasp, even when displayed as a movie. However, by using one-dimensional cross
sections apparent chaotic two-dimensional behavior displays an amazing amount
of structure (compare Poincari sections). We already applied this technique suc-
cessfully in the study of cellular automata in another context, 26'10 and the present
study is another example of its usefulness.

Furthermore, we will discuss the shortcomings of p as a parameter to charac-
terize the system. For reasons of simplicity we will start with one of the simplest
cellular automata: one-dimensional with K = 2.

FIXED-POINT AND PERIODIC BEHAVIOR

Starting with an even mixture of all possible rules in a cellular automaton of 100
cells, we observe an amazing variety of localized fixed-point and periodic behavior,
which emerges after only a few generations (Figure 1).
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FIGURE 2 Attractors in a one-dimensional CA of length 10.

FORCING AND NON-FORCING FUNCTIONS
Kauffman attributed his results to the special properties of certain rules: certain
rules exhibit a forcing (or canalizing) effect. 6' 7'8 '9 This means that a cell obeying
one of these particular rules, can be forced to a state by only one of the neigh-
bors, regardless of the state(s) of the other neighbor(s). In Table 1 all rules of the
one-dimensional (K = 2) cellular automaton are listed together with their char-
acterization as forcing, half-forcing, noh-forcing, or immune. The clearest example
of forcing is formed by the rules that effect a copy of the state of one of the two
neighbors to the one that obeys the rule (rule 3 and 5). Another example is the
logical AND function (rule 1); if one of the neighbors is zero, it does not matter
what the state of the other neighbor is; the outcome will be zero. However, if one
neighbor is one, then the outcome is determined by the state of the other neighbor.
This is the reason why we call this rule "half-forcing." The logical function exclu-
sive OR (XOR, rule 6) is an example of the opposite of forcing: in all cases both
neighbors will determine the outcome together. Another rule with special proper-
ties is the rule which keeps a cell clamped to a state, regardless of the states of the
neighborhood (rule 0 and 15); this is what we call an "immune" rule.
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TABLE 1 Rule Spor- with K = 2

rule 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
L R I H H F H F N H H N F H F H H I

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

SL=Left, R=Right, I=Immune, F=Forced, H=Half-forced, N=Non-forced

Closer examination of the results of the experiment presented in Figure 2 reveals
that if the input pattern at positions 6, 7, and 8 is 1-1-1, the system will always
Pnd in the cycle of period 4, regardless of the states of the other positions (since
this happens in 12.5% of the cases, the extent of the basin of attraction is easy to
understand 0.125 x 1024 = 128). The rules 5 (F), 1 (H), and 7 (H) at these positions
force the entire system into this pattern.

A parameter often used in the analyses of uniform, simple one-dimensional cel-
lular automata with K = 2 or 3 is A (the proportion of non-zeros in a
rule).' 2" 3"19 '2,' 2 1 For one-dimensional cellular automata with five tates and
K = 4, Langton1" showed that by varying A between 0.0 and 1.0, one goes from
fixed point to periodic to chaotic behavior and backwards. However, several studies
have shown that A alone is not capable of characterizing the rule space sufficiently
if either the number of states or K is small.11,12,13 Other parameters have been
suggested, among which is the so-called dependency. 2 ' This dependency parameter
is analogous to the extent of forcing (a forcing rule has a low value of dependency,
whereas a non-forcing rule has the highest value of dependency). We also see a
correspondence between A and the parameter p, as used in the analyses of cellular
automata with non-uniform rules. We therefore followed Hartman, 5,6 who studied
two-dimensional cellular automata'with non-uniform rules (combinations of AND
and XOR), and by making a series of runs of the one-dimensional (K = 2) cellu-
lar automaton with different proportions of the non-forcing rules (rule 6 and 9).
The results are presented in Figure 3 in which transition from fixed-point and pe-
riodic behavior to chaotic behavior can be observed. The effect of forcing rules is
dramatic: at a proportion of 80- or 85-percent non-forcing rules, highly structured
regions appear in the time plots if the local density of forcing rules is high, whereas
the intermediate "non-forcing regions" still show localized chaotic behavior. The
emergent chaotic behavior in these simulations seems to contradict the results of
Stauffer, who concluded that chaotic behavior does not occur in one-dimensional
cellular automata with K = 2. However, in his simulations the proportion of non-
forcing rules remained fixed at 12.5%.
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FIGURE 3 The effect of non-forcing rules in a one-dimensional CA (K - 2). Time
series (100 generations) of a one-dimensional cellular automaton of 200 cells (K = 2)
with a different percentage of non-forcing rules (rule 6 and 9). On top of every time
plot, the rule type of every cell is indicated by a white bar if it obeys a non-forcing rule,
or a black bar if it obeys a forcing, half-forcing, or immune rule. Each replicate uses a
different initial configuration as well as a different pattern of rules.
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FIGURE 4 The effect of non-forcing rules in a two-dimensional CA (K = 5) Resufts of
a two-dimensional cellular automatonotf 100 x 100 cells (on a torus), with K = 5 and
different percentages of the non-forcing XOR. (a) The states at t = 100. (b) lime series
(100 generations from t = 100 to 200) of row 50. (c) Positions of fixed points, showing
the "frozen' regions. (d) Positions of cycles with period 2. The rules which have been
used in these simulations are (with N, S, E, and W, representing the neighboring cells
and c the center cell): 0% non-forcing- C or E or W or N or S (OR-rule), C and E
and W and N and S (AND-rule), C or E or W xor N and S, C or E or W or N XOR S;
25% non-forcing- C or E or W XOR N and S, OR-rule, AND-rule, XOR-rule; 50% non-
forcing- OR-rule, AND-rule, XOR-rule; 100% non-forcing- C xor E xor W xor N xor S
(XOR-rule). It will take some time before the system will attain its attractor, (continued)
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FIGURE 4 (cont'd.) so (c) and (d) are obtained by recording the fixed points and
cycles of period 2 from t = 100 to t = 200 generations. Only in the system with 2%
non-forcing rules did we observe a small number of cells (< 10) that didn't settle yet in
their local periodic or fixed-point behavior after 200 generations.

TWO-DIMENSIONAL CELLULAR AUTOMATA
The above results extended to two-dimensional cellular automata are shown in
Figure 4. For practical reasons, we do not assign every cell a rule from the whole
set of possible rules (which is 2(25) = 5.9 * 10'), but we draw our rules from a small
subset, which (of course) includes the non-forcing XOR function.

Figure 4 (a) shows the states at t = 100. These static plots do not show any
differences. Figures 4 (c) and (d) show the positions of respectively the fixed points
(c) and the fixed points or cycles of period 2 (d), in order to show the extent of the
"frozen" regions. However.the tie series of the one-dimensional sections (b) provide
a much better insight in the qualitative behavior of the two-dimensional system. }t
is striking that also in these two-dimensional systems, the patterns are extremiely
localized. Again, increasing the proportion of non-forcing rules yields a transition
from fixed-point and periodic behavior to chaotic behavior.

CONCLUSION
The analyses of the rule space of uniform cellular automata showed that one param-
eter (usually A) is not sufficient to characterize the rich behavior of these systems.
Therefore, we advocate the inclusion of more parameters in the analysis on non-
uniform cellular automata. The proportion of non-forcing rules is an important
parameter in these systems.

ACKNOWLEDGMENTS
The meetings of the discussion group on cellular automata during the summer
school have been an important stimulans for writing this paper (JDvdL). We there-
fore thank Pedro, Antonio, Erhard, Erik, Paul, Richard, and Sidney. We also thank
Julius Wintjes for linguistic advice.



Cellular Automata with Non-Uniform Rules 439

REFERENCES

I. Boerlijst, M. C.. and P. tIogeweg. "'Self-Structuring and Selection: Spiral
Waves as a Substrate for Prebiotic Evolution." In Artzficial Life II, edited by
C. G. Langton. C. Taylor. J. D. Farmer, and S. Rasmussen. 255-276. Santa
Fe Institute Studies in the Sciences of Complexity, Proc. Vol. X. Redwood
City, CA: Addison-Wesley, 1991.

2. Derrida, B., and I). Stauffer. "Phase-Transitions in Two-Dimensional Kauff-
man Cellular Automata." Europhy. Lett. 2 (1986): 739-745,

3. Derrida. B., and Y. Pomeau. "Random Networks of Automata: A Simple An-
nealed Approximation." Europhyszcs Letters 1 (1986): 45-49.

4. Hartman, 11., and G. Y. Vichniac. "Inhomogeneous Cellular Automata (INCA).'"
In Disordered Systems and Biological Organization. edited by E. Bienenstock,
F. Fogelman Souli6. and G. Weisbuch, 53-57. Berlin: Springer-Verlag, 1986.

5. Hartman, H., P. Tamayo, and W. Klein. "Inhomogeneous Cellular Automata
and Statistical Mechanics." Complex Systems 1 (1987): 245-256.

6. Kauffman, S. A. "Metabolic Stability and Epigenesis in Randomly Con-
structed Genetic Nets." J. Theor. Biol. 22 (1969): 437-467.

7. Kauffman, S. A. "Boolean Systems, Adaptive Automata. Evolution." In Dis-
ordered Systems and Biological Organization, edited by E. Bienenstock, F.
Fogelman Souli6, and G. Weisbuch. 339-360. Berlin: Springer-Verlag, 1986.

8. Kauffman, S. A. "Principles of Adaptation in Complex Systems." In Lectures
in the Sciences of Complexity, edited by D. Stein. 619-712. Santa Fe Insti-
tute Studies in the Sciences of Complexity, Lect Vol. I. Redwood City, CA:
Addison-Wesley, 1989.

9. Kauffman, S. A. "Antichaos and Adaptation." Sci. Am. 265(2) (1991): 64-
70.

10. van der Laan, J. D., and P. Hogeweg. "Waves of Crown-of-Thorns Outbreaks-
Where do They Come From?" Coral Reefs (1992): in preparation.

11. Langton, C. G. "Computation at the Edge of Chaos: Phase Transitions and
Emergent Computation." Physica D 42 (1990): 12-37.

12. Li, W., and N. H. Packard. "Structure of the Elementary Cellular Automata
Rule Space. Complex Systems 4 (1990): 281-297.

13. Li, W., N. H. Packard, and C. G. Langton. "Transition Phenomena in Cellu-
lar Automata Rule Space." Physica D. 45 (1990): 77-94.

14. Stauffer, D. "Random Boolean Networks: Analogy With Percolation." Philo-
sophical Magazine B. 56 (1987):901-916.

15. Stauffer, D. "On Forcing Functions in Kauffman's Random Boolean Net-
works." Physica D. 38 (1987): 789-794.

16. Stauffer, D. "Hunting for the Fractal Dimension of the Kauffman Model."
Physica D. 38 (1989): 341-344.

17. Stauffer, D. "Cellular Automata." In Fractals and Disordered Systems, edited
by A. Bunde na.;c S. Havlin. 297-321. Berlin: Springer-Verlag, 1991.



440 Jan D. van der Laan and Maarten C. Boerlijst

18. Weisbuch, G., and D. Stauffer. "Phase Transitions in Cellular Random Boolean
Nets." J. Physique (France) 48 (1987): 11-18.

19. Wolfram, S. "Statistical Mechanics of Cellular Automata." Rev. Mod. Phys.
55 (1983): 601-644.

20. Wolfram, S. "Universality and Complexity in Cellular Automata." Physzca D
10 (1984): 1-35.

21. Wolfram, S. Theory and Applications of Cellular Automata. Singapore: World
Scientific, 1986.



Stella Veretnik

Department of Genetics and Cell Biology, University of Minnesota, St Paul, MN 55108

Random Boolean Networks: Comparison
Between Randomly Connected and Lattice-
Connected Networks

Random Boolean networks exhibit self-organizing properties and can be
used as a model of the biological cell. Below I show that network geometry-
the way in which nodes are connected-produces networks with different
behaviors. Network behavior is affected by the method used to calculate the
subsequent state of the network, absence of certain Boolean functions and
the size of the network. The behavior of a variety of networks is revealed
through computer simulation.

1. INTRODUCTION

Random Boolean networks have been shown to exhibit self-organizing proper-
ties; particularly striking results are achieved in Lhe nets with connectivity of two
(K = 2).1,2,3,4 5 A network with N nodes (each can take the value 0 or 1) has 2 N

potential states, but on the average only a small proportion of those, approximately
N states, are stable (i.e., belonging to the cycles). The number of cycles reached by
the network and cycle length are extremely short, approximately v/W.4 Kauffman
showed that the above networks can be used as a model of a biological cell or some
aspects of it.4 '5 In this model individual genes are represented by the nodes of the
network, interactions between genes are modeled by the connections between the

1991 Lectures in Complex Systems, SFI Studies in the Sciences of Complexity,
Lect. Vol. IV, Eds. L. Nadel & D. Stein, Addison-Wesley, 1992 441
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nodes. A network cycle is then viewed as a cell type; the length of the cycle is associ-
ated with time between cell divisions. The majority of the data about the networks
is derived from computer simulations,2,4 although theoretical predictions have been
made.3', The results of computer simulation presented in this paper argue that ran-
domly connected and lattice-connected networks exhibit different behavior under
identical set of parameters. The effect of several basic parameters was studied: the
method used for updating the nodes during calculation of the network's next state,
exclusion of Contradiction and Tautology Boolean functions, and increasing the size
of the network. Lattice-connected networks are very sensitive to changes in these
parameters: the number of cycles and the length of the run-in increases dramati-
cally causing loss of some self-organizing properties of the network. Those types of
networks cannot, therefore, be a successful model of a biological cell. Furthermore,
some combination of parameters-synchronous method of node update and use of
only 14 Boolean functions-causes randomly connected networks to go through an
extensive number of steps (< 5N, where N is number of nodes in the network) be-
fore a cycle is found. Only selected types of networks exhibit biologically plausible
behavior.

2. DEFINITIONS
2.1 BASIC ELEMENTS AND BEHAVIOR OF THE NETWORK

A network is constructed using basic elements called nodes. Each node is a binary
device, taking values of 0 or 1. A node calculates its state based on inputs from
other nodes and its internal logical function called a Boolean function. The state of
the node serves as an input to other nodes. The state of the network can be defined
as a joint state of all its nodes at any given time. Starting in any of the possible

2 N initial configurations, the network passes through some sequence of states until
it comes to one of the previously encountered states, closing the cycle. From that
point on, the network traverses the same subset of states, since the transitions
between network states are fully deterministic. The number of states comprising a
given cycle will determine its length. Depending on the initial state of the network,
different cycles can be reached. The sequence of states that the network traverses
before it reaches a cycle is called the run-in. Networks can leave a cycle and move
into another cycle upon introduction of noise (noise can be viewed as a temporary
switch in the state of one or more nodes).
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2.2 CONNECTION BETWEEN NODES

Each node in the network is connected to other nodes. Connectivity of two (I%7 = 2)
means that each node has two nodes from which it receives inputs and two nodes
(possibly different ones) to which it sends its output. Two possible ways of making
connections between nodes have been explored: randomly connected4'5 and lattice-
connected networks."12'3 In randomly connected networks the connections between
nodes are assigned randomly. In lattice-connected networks the immediate four
neighbors of the nodes are used for connection-two serve as input nodes and two
as output nodes. The latter method of connection is useful for easy visualization of
closely interacting nodes.

2.3 TECHNIQUE OF NODE UPDATE

Each node of the network calculates and updates its state at every iteration of the
network. The network develops in discrete time steps: outputs of the nodes at time
(t - 1) will serve as the inputs into the nodes at time (t - 1) and will, therefore,
determine the outputs at time t. There are two possible temporal ways in which
the node update can be done:

I All nodes in the netrork update their state simultaneously-at time (t - 1)
all nodes look at their inputs and calculate the outputs for time t. This can
be seen as a synchronous or parallel process (this is a type of update that is
claimed to be used in the majority of the simulations.2 '4)

a Nodes update their state asynchronously-that is, there is some order in which
the update is performed until all nodes calculate their state, at which point
the network reaches its subsequent state. This is a sequential process; it can
be viewed as multistep (precisely, N - step, N is a number of nodes in the
network) process. Therefore the time unit t consists of N intermediate steps:
t1, t2,- -, tN, the last step coinciding with time t of the simultaneous update:
t = tN. At each step the network's state is affected by a change in the state of
only one node (the node that is being updated at that time unit). The (N - 1)
steps of this process are transient and only a final step is a "real" state of the
network.

Both types of update are considered here to be a one-step iteration from the
point of view of the network.

2.4 BOOLEAN FUNCTIONS

There are 16 transformations with two inputs, called Boolean functions. Most of
the 16 Boolean functions with two inputs are forcing functions. The term "forcing"
means that •he function's output can be determined by one input value, independent
of the value of the second input. The forcing input is the value of the input that
determines the output, the forced output (or value) is the outcome of the function
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under the forcing input. Two out of 16 Boolean functions are not forcing: these
are Equal and Exclusive OR. Two other functions (Contradiction and Tautology)
output the same value under any input. For these and the rest of the functions, one
or both input values can be forcing.

2.5 FORCING STRUCTURES

When a forced output from one node in the network turns out to be a forcing input
into another node-the basic unit of a forcing structure appears. Forcing structures
vary in length; a forcing input into the forcing structure is guaranteed to propagate
along it, forcing all the nodes along the path into their forced values. Closing a
forcing structure on itself creates a forcing loop, it is a more powerful structure than
a linear forcing structure and its propagating signal eventually reinforces itself.5

Forcing structures are abundant in the random Boolean networks with two inputs
because majority of the Boolean functions (14 out of 16) are forcing functions.
Forcing structures (loops, in particular) will "freeze" parts of the network in a
particular mode, artificially reducing the number of potential states of the network
and, therefore, contributing to the self-organizing behavior.

2.6 PREVIOUSLY PREDICTED BEHAVIOR OF THE NETWORK

Kauffman's simulations 4,5 predicted that for randomly connected networks with
two inputs, the average cycle length is VW and average number of cycles v'I,
where N is size of the network. When perturbed, the network is expected to return
to its original cycle in approximately 90% of the cases.

3. SIMULATIONS
A set of parameters is chosen for the network simulation and run repeatedly under
multiple conditions. The results of thesimulations are averaged and are interpreted
as a "tendency in the behavior" for a particular type of network.

3.1 INPUT PARAMETERS UNDER INVESTIGATION

All networks have connectivity of two (k = 2); a network simulation is selected
according to:

"* type of connection between nodes (random or lattice)
"* technique of node update (synchronous, asynchronous)
"* subset of the Boolean functions used (14 or 16)
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Every combination of the above parameters specifies a type of network; thus. a
total of eight different types of networks are simulated.

A network is determined by assigning node connections and Boolean functions.
Many different networks of each type are simulated. Each network is simulated
under multiple initial node states, and results are averaged to determine behavior
of that network.

Results from different networks are later averaged as well in order to come up
with average behaviorof the network type under a specific set of parameters (such as
the method of connections, technique of node update, or exclusion of some Boolean
functions). This second average represents behavior of the network independent of
the specific Boolean function or connections between nodes (in the case of randomly
connected nets).

3.2 OUTPUT PARAMETERS OF INTEREST

Every type of network can be characterized by several averaged parameters. in
particular:

"* number of different cycles to which networks arrive
"* length of the cycles (icighted (which includes all cycles) and not-weighted (only

unique cycles are considered))
"* length of the run-in (how long it takes before the network arrives at a cycle)

3.3 SIZE OF THE NETWORKS

Simulations are done on networks of two sizes.

1. 100-node Networks (10x 10): 100 different networks of each type are search-
ed; each is run under 400 initial conditions. Simulations are done on a Mac II
and a Sun4.

2. 900-node Networks (30x30): small numbers of networks are used; each
run under 600 initial conditions. Simulations are done on a Cray XM-P. Only
selected types of networks weresimulated on the Cray.

4. RESULTS
The effects of three different parameters on the behavior of the random Boolean
networks with two possible geometries of node connection (randomly connected and
lattice connected) have been studied:

1. Exclusion of Contradiction and Tautology functions out of the set of 16 possible
Boolean functions.
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2. Asynchronous vs. synchronous update of nodes in the network.
3. Increasing the number of nodes in the network.

Lattice-connected networks have a different response to the change in these pa-
rameters; in particular lattice-connected networks appear to be more "sensitive" to
the changes than randomly connected networks. In this section I compare the be-
havior of lattice-connected and randomly connected networks. Note that the effect
of the first two parameters is studied on the networks of 100 nodes.
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FIGURE 1 Comparison between synchronous and asynchronous update in the
randomly connected networks.
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4.1 EFFECT OF THE NODE UPDATE TECHNIQUE

TYPES OF THE NODE UPDATE There are two different techniques of node update
that are used in the simulations:

1. Synchronous update: all nodes of the network are updated simultaneously.
2. Asynchronous update: nodes are updated in some predetermined sequence.

Two different types of sequential update are tried: (1) lattice-ordered, that is,
nodes are updated in their numerical order (left to right, top to bottom), and
(2) random, that is, nodes are updated in random order (which is established
once for each network).

Results produced under sequential and random update are essentially identical
as expected; only the random type of asynchronous update is reported here.

RANDOMLY CONNECTED NETWORKS have, essentially, the same behavior under
the synchronous and asynchronous update. All three studied parameters-number
of cycles, cycle length, and length of run-in-tend to be 2-3 times longer under the
synchronous update. See Figure 1 (compare histograms A (asynchronous update)
with histograms B (synch'Fonous update)); also, compare lines 1 and 3 in Table 1.

LATTICE-CONNECTED NETWORKS show an increase in the number of cycles that
the network reaches, while the length of the cycle and run-in remain the same; see
Figure 2 (compare histograms (a) (asynchronous update) with histograms (b) (syn-
chronous update)). The increase in the number of cycles under synchronous update
is rather dramatic-an average of 213 cycles is found in 400 runs (under different
initial conditions). When the number of different initial conditions is increased to
1000 the number of found cycles is increased to 428 (see Table 1), indicating that
the number of potential cycles of the network is not exhausted yet. Thus, the num-
ber of cycles in the lattice-connected networks under synchronous update is > 4N
(N is a number of nodes) for 100-node networks.

4.2 EFFECT OF EXCLUSION OF TWO BOOLEAN FUNCTIONS: TAUTOLOGY

AND CONTRADICTION

Two sets of Boolean functions are studied:

a The set of 16 functions consists of all possible Boolean functions occurring with
equal probability, and

a The set of 14 functions lacks Contradiction and Tautology; the rest of the
functions are equally distributed.

Tautology and Contradiction are the most powerful forcing functions: their out-
put is independent of the input. One would expect networks without those functions
to possess weaker forcing structures.
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BOTH RANDOMLY AND LATTICE-CONNECTED NETWORKS show a tendency toward
longer run-ins and longer cycle length in networks with 14 Boolean functions; see
Table 1. The increase in the length of the cycle and run-in is approximately twice
for lattice-connected nets and 3-4 times for randomly connected networks with 100
nodes under asynchronous update. The effect is very different under the synchronous
update (see next section).

4.3 JOINT EFFECT OF THE SYNCHRONOUS UPDATE AND EXCLUSION OF
CONTRADICTION AND TAUTOLOGY

FOR THE RANDOMLY CONNECTED NETWORKS: The exclusion of Contradiction
and Tautology functions can be seen as a destabilizing effect on the network-it
takes longer for the network to find a cycle. Synchronous update has a similar
effect-it can increase the number of potential cycles or the length of the run-
in and of the cycle. Individually those effects are mild-increasing values only by
factor of two. However, joining the two effects produces networks with interesting
properties-their run-in length increases dramatically: from a 9-step average run-
in, it increases to more than 450 steps (in 50% of the simulated networks; see
Table 1, compare line 1 andt 4). It is interesting to note that this effect is specific
to the length of the run-in while cycle length and number of cycles are affected
mildly; see Figure 3. Furthermore, run-in length does not appear to be distributed
evenly-networks can be divided into two classes: those with relatively short run-
ins (average is 56) and those with very long run-ins (exceed 450). Any network of
this type (synchronous update, 14 Boolean functions, randomly connected) has an
equal probability to fall into one of the classes.

FOR THE LATTICE CONNECTED NETWORKS: The joint effects of the synchronous
update and 14 Boolean functions increase an already very large number of the po-
tential cycles to approximately 6N (N is number of nodes) and probably higher,
since the ceiling of the number of cycles had not been reached during these simu-
lations. Interestingly, this size of lattjce connected networks (100 nodes) does not
show a significant change in cycle length or length of the run-in-which is charac-
teristic for randomly connected networks.
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4.4 INCREASING NUMBER OF NODES IN THE NETWORKS

All of the above results are from the networks with 100 nodes. 900-node networks
were simulated on a Cray X-MP supercomputer. Three types of the reiworks were
simulated; only a limited subset of Boolean assignments were tested, but some basic
properties of the networks of larger sizes might be discernc-; see Table 2.

FOR THE RANDOMLY CONNECTED SYNCHRONOUSLYAND ASYNCHRONOUS-
L Y UPDATED NETWORKS WITH 16 FUNCTIONS: The number of cycles and the cycle
lemgth increase proportionally with the size of the network. All networks found a
cycle within first 600 steps of the network. 40% found a cycle after 350 steps of the
network.

FOR LA TTICE-CONNECTED ASYNCHRONOUSLY UPDATED NETWORKS: Fifty per-
cent of the networks could not reach the cycle after 350 or 600 steps. Those networks
that do reach a cycle have long cycles and almost every cycle found is identified as
unique. Therefore, it is yet undetermined how many potential cycles there are in
networks with 900 niodes. This type of the network has a small number of cycles and
the shortest average run-in from among all types of networks with 100 nodes, but
its behavior changes radically with an increase in the size of the network; compare
line 5 in Tabje 1 and lines four and five in Table 2.

4.5 DISTRIBUTION OF CYCLE LENGTH

One of the interesting questions is whether there is a tendency toward a specific
cycle length (longer or shorter than average) in the frequently occurring cycles.
For thaL purpose two methods were used for measuring cycle length: weighted and
not-weighted cycle length. For the weighted cycle length, each cycle contributes to
the average cycle length proportionally to the frequency of its occurrence. In the
not-weighted average, every iype of cycle is considered only once.

It is interesting to notice that there is a general tendency toward higher values
for the weighted cycle length, indicating a correlation between longer cycle length
and frequently occurring cycles. The increase is more noticeable in the randomly
connected network with 14 Boolean functicns-the weighted average cycle length

is 40% longer.

5. DISCUSSION
Different types of networks can be ranked according to the degree to which they
exhibit characteristics appropriate for a biological model. Both lattice-connected
and randomly connected networks perform well under asynchronous update with
16 Boolean functions and the small size of the network (100 nodes here). Their
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actual number of cycles and cycle length are close to the predicted values of V./
(N is the number of nodes). Any deviation from this set of parameters introduces
a destabilizing effect into the behavior of the networks.

FOR RANDOMLY CONNECTED NETWORKS The effect of synchronous node update
or exclusion of the Contradiction and Tautology Boolean functions is small, but
the combination of the two effects causes a dramatic increase in the length of the
run-in. There is no clear biological interpretation of the length of run-in; it could be
correlated with the length of transition of the network between different cycles in
the presence of noise. During the run-in the network is not committed to a specific
cycle. In biologica! terms it means that the transition between different cell types
takes a very long time in comparison with the cell's lifetime, which is a poor model
of a real cell. It is, therefore, important to test how long it takes for this type of
network to move between the cycles (if noise is introduced).

Also, only the most "well behaved" type of the network (asynchronous update.
16 Boolean functions) was tested on the larger size networks; the behavior of other
types of the randomly connected networks under the increased size of the network
is unknown.

FOR LATTICE-CONNECTED-NETWORKS Synchronous update has a quite different
effect: in the case of randomly connected networks, it increased the length of cycles
and run-ins; in the lattice-connected networks, it increases number of potential cy-
cles dramatically. Exclusion of the Contradiction and Tautology functions augments
this effect; tL, network loses some of its self-organizing pioperties.

When network size was increased from 100 to 900 nodes, even the "best be-
haved" lattice network (asynchronous update with 16 Boolean functions) loses its
self-organizing b "havior: its run-ins increased more than 50 times (in 50% of the
cases) and the number of cycles is undetermined yet, but is at least on the order of
N (N is size of network) and, probably, much higher (see below).

The above results indicate that lattice-connected networks under a very lim-
ited subset of possible conditions are able to model biological behavior. Loss of
the self-organizing properties with increasing size appear to be the most crucial
disadvantage-real biological cells have several thousand genes and therefore should
be modeled with at least that many nodes in the network. Lattice-connected net-
works are clearly incapable of doing so.

THE TEMPORAL WAY IN WHICH NODES OF THE NETWORK CALCULATE their states
(local rule) has a strong impact on the global behavior of the lattice-connected
network (it affects number of the cycles of network). Asynchronous update results
in a smaller number of potential cycles of the network when compared to networks
under synchronous update. Why is this so? Asynchronous update allows much faster
propagation of the signal through the network; the signal can traverse part of the
forcing loop or forcing structure within one update iteration. Forcing structures
which are responsible for the self-organizing effect of the network are formed sooner.
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Once part of the structure is formed, it becomes insensitive toward all non-forcing
inputs. Somehow, rapid formation of the forcing structures limits the number of
potential cycles the network can reach. I currently do not have an explanation for the
phenomena nor for the fact that it affects lattice-connected networks much stronger
than randomly connected networks. My guess is that certain combinations of the
oscillating groups (this term is borrowed from Atlan et al.' 2) can only be formed
in the absence of the nearby forcing structure, which in the case of asynchronous
update appears just too fast. Every cell cycle is a combination of the local oscillating
groups2,6; thus, fewer oscillation groups will mean fewer cycles. This point should
be investigated further.

Although asynchronous update does not appear to be a pure one-iteration
update, it is a more realistic model from a biological point of view-different com-
ponents within cell (enzymes, m-RNAs) have different thresholds for synthesis,
different stability, etc. A more detailed model is presented by Thomas.' It is im-
portant to mention that the technique of node update has a rather modest effect
on the length of the cycles and the run-in length.

The dramatic change in the behavior of lattice-connected networks with an
increase in size could be explained by the unique geometry of connections between
the nodes. Lattice connection between nodes forces a formation of the very small
local forcing loops, which~in turn, contribute to the formation of oscillating groups.
Oscillating groups contribute directly to the number of the potential cycles: the
number of potential cycles is proportional to the number of combinations of the
oscillating groups. An increase in the network size increases the number of the local
loops linearly and, therefore, causes an exponential increase in combinations of the
oscillating groups and number of potential cycles. In randomly connected networks
random connections between the nodes ensure longer forcing loops and a relatively
small increase in the number of loops, preventing rapid increase in potential cycles.

Length of a cycle appears to be the most stable property among three mea-
sured parameters (cycle length, run-in length, and number of cycles). It showed a
significant increase only in the case of large lattice-connected networks.

Even within a particular type of network, the statistical behavior is not uni-
formal and may depend on the Boolean assignments and node connections within
individual network.

SUMMARY
Behavior of lattice-connected and randomly connected networks is different,, and it
converges under a very small subset of parameters. Randomly connected networks
show strong self-organizing behavior under most of the studied conditions. Lattice-
connected networks, on the contrary, exhibit very large number of potential cycles
under most of the parameters studied and, therefore, are a poor model of the
biological cell.
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The Production of Solitons By Optimal Driving
Forces

In general, nonlinear waves are not stable in a chain of finite length. Since they
have a finite lifetime, it is important to investigate the production of nonlinear
waves, e.g., the production of solitons. A general feature of nonlinear waves is the
amplitude frequency coupling, which causes the excitation by sinusoidal driving
forces to be very inefficient. The response is usually very complex in addition. We
present a method'°'15 to calculate special aperiodic driving forces, which generates
nonlinear waves very efficiently. The response to these driving forces is very simple.

INTRODUCTION

When a nonlinear oscillator is perturbed by a sinusoidal force, the response is
comparatively small in amplitude, 3 and does not fulfill any well-defined resonance
condition, 9 even when the frequency of the driving force coincides with a peak (res-
onance) in the power spectrum of the unperturbed system." Outside the region of
entrainment, the response is complicated, in many cases chaotic.1',17 In order to
obtain a large, simple, predictable response, the frequency of the driving force has
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to be varied in such a way, that it coincides at all amplitudes with the character-
istic frequency of the oscillator. 7 Since the characteristic frequencies of nonlinear
oscillators usually depends on the amplitude, the optimal driving force has to be
aperiodic. Recently a method to calculate those optimal driving forces has been
presented." We apply this method in order to calculate optimal driving forces for
the creation of solitons.

CREATION OF SOLITONS BY APERIODIC DRIVING FORCES
Nonlinear waves and solitons provide good mathematical models in various fields
of science."l In most experimental systems solitons have a long but finite lifetime.
Therefore we investigate the creation of solitons by external perturbations. We
assume that the dynamics of the experimental system can modeled by a sine-Gordon
equation

u. - ut - sin(u) = F(z,t) (I)

where u(z, t) is the field amplitude which depends on space z and time t and where
F is an external perturbation which only depends on time and space. In order to
calculate resonant driving forces, we integrate according to fiibler and Liischers

the following goal dynamics

wrx - wt - B sin(u) + wtO(lx - 501- 2.5) = 0 (2)

where B is a parameter and where E is Heavisides step function. We take circular
or fixed boundaries at z = 0 and x = 100. The simulation is finished at time T is
when Iw(z,T)I > ir. The initial conditions are w(z,0) = .0 and w(50,0) = .001.
The driving force results from

F(x, t) = (xt)E(Ix - 501- 2.5) (3)

and F(z,t) = 0 for t > T . The baskc idea is that, if the structure of Eqs. (1)
and (2) are the same, i.e., B = 1, u(z,t) = w(z,t) is a special solution of Eq.

(1). In this case the energy transfer P(t) = f0o°° Fiudz is positive for all t, i.e.,
no energy is reflected since F is proportional to wt. Therefore the coefficient of
absorption is 100%, the reaction power is zero, and the perturbation is resonant.
The special space, dependence of F was taken in order to create solitons instead of
other nonlinear waves. Figure 1(a) shows the result of a numerical simulation of the
response of the sine-Gordon system. For the integration we use 100 homogeneously
distributed break points. The initial amplitudes of u at these break points are
randomly distributed in the interval [-10-5, 10-5] and the initial velocity is set
equal zero. Figure 1(a) illustrates that nearly all the transferred energy is used for
the creation of a soliton-antisoliton pair since there are no additional waves in the
chain. The situation is completely different if we apply a sinusoidal driving force
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of the same magnitude for the same period of time and in the same region of the
chain. In this case no solitons are created (see Figure 1(b)), but a very complicated
dynamics results due to the misfit of the driving frequency and the eigen frequency
of the system (Figure 2(a)). This example illustrates that the response of a nonlinear
system is usually very complicated whereas the response can be well predictable
and simple if special aperiodic driving forces are used, since u(x, t) = w(x, t) and
u'(z,t) can be calculated in advance for an infinite long period of time.

(a) (b)
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FIGURE 1 The field amplitude u versus x after an aperiodic optimal stimulation (a)
and after a sinusoidal stimulation (b).

(a) (b) EabsiEref ,s a function of sine coefficient
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FIGURE 2 The field amplitude u(50, t) versus time for a sinusoidal perturbation (a)
and the ratio between the reflected and the absorbed energy versus the parameter B
of the model (b).
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NONLINEAR RESONANCE SPECTROSCOPY
An essential condition in order to get such a simple response is to have a correct
model. Otherwise, u differs from w and usually the dynamics is chaotic and an
essential part of the energy is reflected. Figure 2(b) shows the ratio R between the
reflected and the absorbed energy versus B. R reaches its maximum value when the
parameters of the model and the parameters of 1,,e goal dynamics coincide. In this
case the response is simple and predictable for an infinite long period of time, while
in all other cases including periodic perturbations, a very complicated response was
found. By a systematic search for the minimum of the reflected energy as a function
of the parameters of the model, the correct magnitude of these parameters can be
determined.

MORE GENERAL CONSIDERATIONS
We now calculate how much energy provided by external driving force feeds into
the system. The total energy of the system is:

E(t) =; + -•- + cos(u) dx. (4)

The absorption energy and reflection energy of the system is:

Eabs = _PO(P)dt (5)

Ej = - E PO(-P)dt (6)

whereas P f Futdx is the power pumped into the system. The efficiency is:

(9.b - Erel (7)

The numerical calculation we did shows that EI = 0.0 and /3 = 0.975 which is
quite close to one. We see that all the energy pumped in is absorbed by the system.
The discrepancy of 8 from 1 is caused by some errors while doing the calculation
using specific numerical methods which are not intrinsic to the problem we are
-1 ud ii-A g.

There are possible difficulties with controlling systems represented by partial
differential equations regardless of the method. One major drawback of controlling
spatially extended systems is the possible complexity of the driving force. Since this
force is spatially dependent, it may not be possible to apply the force to the system
once it is calculated.
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There are several possible solutions worth exploring.1 3 The first is a simpli-
fication of the driving term by spatial Fourier decomposition. Control or at least
favorable modification of the system might be achieved by applying a simplified
f(X,t) on a finite set of points in the domain. In the event that it is not possible
to spatially modulate the driving force, a suitable f(t) might be found by compar-
ing the local attractors of the field variable at various points in the domain. Some
systems have small localized regions which are extremely sensitive to external per-
turbations. For situations where these perturbations influence a major portion of
the system, our control theory holds promise.

Another possible problem is the magnitude of the driving force. Situations
may arise where the energy required to apply F(x, t) forbids its use. The size of
the driving force is directly related to how far the goal and model dynamics are
separated in function space. Since it is the phase information, not the magnitude
of the driving term that is important, we can replace F(X, t) with 6F(z, t), where
6 < 1, in the system, provided boundary correction terms are not employed. The
result will be that experimental systems will entrain to the goal dynamics more
slowly.

If we apply a force locally to a string, the curvature of the string is ploportional
to the force. Since the driving force we now use .'. a,, we would expect w, = awt
where a is a constant itr the middle of the region of applied force. Indeed. our
numerical calculation shows that w,,(50,t) ; -0.2wt(50,t). Now if we substitute
this relation into model equation, the system becomes:

ul,_ - utt - sin(u) = F, (8)

awt - wtt - sin(w) = F (9)

F, = awt(2 + A) (10)

where A is a parameter within the range of 1.0 and -1.0. F is at least awt in order
to overcome the friction; a larger force will drive the system and possibly produce
solitons.

Now we can see that the model equation (or goal equation) is an ordinary
differential equation, so we can numerically integrate this equation to get the driving
force. We apply this homogenous driving force to the experimental system to see if
we can drive the system and produce the solitons.

Our numerical simulation shows that if we use initial condition u(z,0) =
0.,w(x,0) = 0.01,w(50,0) = 0.01, the whole system (except boundary points)
is moved together as the time goes on. This is easy to understand since the homo-
geneous driving force exerted on the system with initial uniform distribution will
lead the whole system to move simultaneously. There are apparently no solitons
produced (Figure 3).

If we add some noise to the experimental system (that is, to take into account
the effect of temperature), the situation is different. The initial distribution of the
system is no longer uniform, so there are many different frequency modes in the
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FIGURE 3 The whole system moves up. Here F(x) or Fi(x) is U(x).
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FIGURE 4 The production of a solfton by an optimal driving force.

system compared with just one mode in the uniform system. We would expect
that even the homogeneous driving force will excite (or resonate) one or more
specific frequency modes of the nonuniform system, amplify them, and therefore
produce solitons. So we use a point-wise driving force estimate w, and then we

use the resulting driving force as a homogeneous driving force. This might sound
inconsistent. In principle we need to apply a very local driving force in order to
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stay consistent, however if the noise in the system produces local maxima which
get resonance with the driving force, the inter-reaction is local even if the driving
force is homogeneous.

The numerical simulation results are shown in Figure 4. We find that with
the initial distribution w(x,0) = 0.1, u(z, 0) = 0.2(ranf() - .5), F = 0.2ti,F 1 =
2.4F, one soliton is produced. The result is quite sensitive to the driving force we
choose and noise of the system. Any small deviation of these parameters would
not lead a soliton production. We only see one soliton produced since the form of
our variational derived force F is a special solution of the differential equation, not
the general solution. So it can only excite certain modes of the nonlinear system.
The sensitive dependence of the result on the driving force can be understood
since a larger driving force will move the whole system and a smaller driving force
will not be enough to create a soliton. The sensitive dependence of the result on
temperature or noise can be understood since, for lower temperature or noise, the
degree of nonuniformity is small, and for higher temperature the noise becomes so
large that it overwhelms the system, which is not a realistic situation.
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algorithms, 218, 220 I
search, 390 icosahedral symmetry, 245

genotypes, 205, 332 illumination, 356
geometrical defects, 269 immune
glasses, 289, 292 network, 427
Goldstein, A. G., 355 rule, 435
Goldstone boson eats the photon, 280 immunofluorescence, 98
Goldstone, Jeremy, 254 iriertial terms, 418
Goldstone modes, 279-280, 255 inhibition-excitation, 102
Goldstone rotational waves, 284 inhibitor, 166
Goldstone's Theorem, 254 inhibitory neurons, 371-372

Goodyear, 348 initial conditions, 175
gradient descent, 144 insect, 416, 425
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instability, 30 learning (cont'd.)
instantiated transitions, 400 laws, 3, 30
instar, 3, 19, 25, 27 matrix, 3, 15, 27
instar-outstar computational map, 28 rate, 144
instrumental conditioning, 114 competitive, 3
integrative mechanisms, 73, 82 least mean squared error ccrrection rule, 9
interactions, 441 leech locomotion, 93
intermittent movements, 416 leopards, 175
internal Levy, E. I., 355

elastic moment, 418 Levy
shear force, 418-419, 427 flights, 298
shear moment, 418 walks, 300
viscosity, 427 life, 197
viscous resistance, 420 limit cycles, 72, 83, 86

intracellular messenger, 104 Lindenmayer systems, 209
intrinsic instability, 415, 422, 425, 427-428 line dislocations, 284
inversion, 223, 335 linear associative memory models, 3, 17-18

operator, 336 optimal, 17
space, 336 linear theory, 169

invertebrates, 98 lobsters, 93-94
irregular modes, 428 -- local lesions, 360
iterated prisoner's dilemma, 230 local minima, 73

local neighborhood, 345
J locomotion, 416

Jordan curve theorem, 87 locust walking, 93
logical structure, 197
logistic, 116

K long-range interactions, 422
Kopt, 345 long-term potentiation (LTP), 121
KAM curves, 306 low-dimensional dynamics, 72
Kaplan-Yorke conjecture, 120 LTP, 56
Kauffman nets, 320 Lyapunov exponents, 87
Kauffman system, 172
Kirkpatrick, S., 35 M
Klopf, A. H., 113
know-nothing approach, 141 macroscopic quantities, 321
knowledge, 111 madane, 3, 9, 11
Kohonen, T., 17 perceptron, 9
Koza, John, 220 magnet, 248-249, 261
Kuramoto-Sivashinsky equation, 428 magnetic shield, 277mammals, 95, 101

L mantle, 161
computational, 3

lateral inhibition, 161, 166, 173-174, 184- Marr's assertion, 354
185 mass, 276
lattice-connected networks, 443, 446 massive fields, 267, 273, 280
lazy synapses, 113, 122 mathematical modeling of neural networks,
lead, 277 371
leading edge, 422 McCulloch, W. S., 4, 7
learning, 3, 8, 79, 109 McCulloch-Pitts

equations, 23 formalism, 7
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McCulloch-Pitts (cont'd.) mutation, 221, 335
linear filter, 12
model, 7 N
neuron, 3-4

mean-field theory, 322 Nakano, K., 17
mechanical process, 195 Nash equilibria, 347
mechanics, 190 natural selection, 219
Meinhardt system. 167, 177, 185 negative diffusion, 427
Meissner-Higgs effects, 267, 277. 284 neighborhood, 390
melanophores, 161 nematic liquid crystals, 260
memory nematics, 249

storage, 71 neocognitron, 3, 34
associative, 32 network
autoassociative, 20 architecture and bifurcation
content addressable, 19 dynamics, 118
heteroassociative, 20 behavior, 441
linear associative, 17 cycle, 442

Mermin-Wagner Theorem, 256 size, 121
metaknowledge, 111, 122 systems, 427
metallic glasses, 264 state of, 442
Metropolis algorithm, 35 shunting competitive, 3
mexican hat, 276, 278 - neural
Michelin, 348 networks, 371
microtubules, 416 architecture, 74
minimal coupling, 280 crest, 161

adaline, 9 fields, 371
additive, 22 model, 22, 34
linear associative memory, 17-18 network, 3-4, 143, 427
madaline, 9 network models, 3
perceptron, 8 neurocircuits, 91, 104
real-time, 19 neuromodulation, 98
shunting, 22 neuronal

mollusk shells, 161 architectures, 104
moment-balance equation, 418 dynamics, 373
monkeys, 58, 355 signalling, 50
Montroll-Weiss random walks, 293 neurotransmitters, 98, 104
Moore-Penrose pseudoinverse, 17 niobium, 277

see also linear associative memory, NK model, 409-411, 413
17 NKC models, 331, 413

morphogenesis, 160 node, 441-442
motor node update technique, 443

learning, 97 noise, 357, 442
system, 67 nondimensionalization, 167

movement, 393 nonlinear
multi-level perceptrons, 12 dynamics, 114
multifunctional, 76 oscillator, 457

networks, 91 systems, 179
multilayer perceptrons, 140 waves, 457
multiplexer, 323 normal components, 418
Munro, P., 27 normalization, 142
muscimol, 56 null clines, 168
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numerical simulations, 175, 180, 415 patterning (cont'd.)
nymphalid ground plan, 181-183 of color, 161

of pigment, 161
O of presynaptic activity, 58

random and non-random, 175
occlusion, 356 Pavlovian and avoidance associative learn-
octopus, 357 ing, 79
ocular dominance columns, 44 Pavlovian conditioning, 114
ocular dominance stripes, 175, 179-180 perceptron, 3
odd power, 427 model, 8
off center, 26 performance, 347
oil and water, 246 period-doubling bifurcations, 95
on center, 26 periodic behavioral patterns, 433
one-dimensional crystal, 253 phase portraits, 83, 307
one-mutant neighbor, 410 phase transition, 432

operator, 335 phenotype, 205
space, 336 pigment patterns, 159, 161

ontogenetic transformation, 180 Pitts, W., 4, 7
ontogeny, 181 pituitary, 102
operators, 335 pneumatics, 192
optimal driving forces, 457-458 pneatics, 19Poincar&Bendixon, 87
order parameter, 243-244, 247- polycrystal, 281-282

field, 249 polygonalization, 284
organizing centers, 166 PotyeoalMztio, 284
orienting subsystem, 31 pre-patterning, 160-162
oscillatory behavior, 373 principle of superposition, 203
.outliers, 30 problem of time, 142
outstar, 3, 19, 24, 27 process control, 194

learning theorems, 23 program, 195overtprogram, 195
overtraining, 146 propagating waves, 415-416, 420, 422

proportionality constant, 427
P PTYPES, 206, 219
pace-maker, 427 behavioral, 215
parallel processing, 108 punctuated equilibria, 230, 232
parameter space, 168 pyramidal system (PS), 96
Parker, David, 12
Parkinson's disease, 96, 102 Q
partial differential equation, 415 quasi-crystals 243, 245
passive elastic component, 420 quickprop, 144
passive region, 427
passive sliding, 415 quiescent background, 393
pattern

formation, 159, 163, 179, 181 R
recognition, 3, 355 rabbit, 112
training, 147 olfactory bulb, 79

patterning, 43 random
butterfly wings, 181 Boolean networks, 431. 441, 444-
cell movement-mediated, 160 445
necessary conditions for reaction- distribution of fitness, 343
diffusion systems, 166 noise, 89, 428
of bone formation, 160 perturbation, 175
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randomly connected networks, 442-444, sea slug, 67, 73, 75, 93, 96

446,450,454 sea urchin, 425

rats, 102, 121 searchable neighborhoods, 335

Ray, Tom, 235 second Homotopy group, 260
reaction diffusion, 165-166, 169, 171-173, second-order machines, 196

175, 177, 180, 185 second sound, 255, 279
reaction-diffusion equation, 427 segmentation problem, 142

reaction-diffusion systems, 166 selection, 224, 354, 390, 396

necessary conditions for pattern- selector, 323

ing, 166 self-organization, 3, 190, 402, 441, 454

real-time models, 19 self-organizing criticality, 84-85

recognition, 353 self-organizing feature map, 28

accuracy, 355 self-oscillatory models, 427

performance, 355 self-reproduction, 198, 392

recursive description, 209 sensitization, 123
recursively generated objects, 208 sexual reproduction in cellular automata,

reduction, 104 391
reductionist approaches, 67, 106 shear force, 427

relatedness, 354 shunting competitive networks, 3, 26

relaxation law, 295 shunting model, 22

remodeling, 45 see also additive models, 22
reproduction, 221 signal propagation, 212

resonance, 457 simulated annealing, 3, 35, 89, 123

response, 457 simulation and mimicry, 180

optimization, 120 sliding, 416

thresholds, 121 displacement, 418, 420, 427
reticular activating system (RAS), 97 filament mechanism, 416

retina, 101 slow human beings, 253

retinotectal system, 55 small-amplitude assumption, 418

Reynolds number, 418 smectic liquid crystals, 268-269
Reynolds, Craig, 215 social sciences, 347
Richardson's law, 297 solitons, 422, 457
Richardson, Lewis Fry, 297 sound waves, 253

rigidity of solids, 255 space derivative, 427

Rosenblatt perceptrons, 8 term, 422
Rosenblatt, Frank, 8-9, 12 space-time diagram, 422
rotational Goldstone mode, 284 space-time patterns, 24

rotational symmctry, 246 spatial homogeneity, 372

rubber bands, 267 spatial inversion, 427
rugged fitness landscape, 412 spatio-temporal dynamics, 123

ruggedness, 409-410, 412-413 spatio-temporal sliding pattern, 415, 422

Rumell" rt, D., 27 specificity, 354

run-in, 442, 445 speech acoustics, 139

length, 450 spiky patterns, 422

R6ssler system, 116 spin model, 409-410, 413
spontaneity, 278

S spontaneous symmetry breaking, 276
St. Petersburg Paradox, 302

scale, 168, 289 stability-plasticity dilemma, 30
scaling, 290 stabilization, 427
Schnakenberg system, 167, 177 stable behaviors, 382
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starting transients, 416
states of matter, 243
Steinbuch, K., 15, 27 torus, 252
stochastic traction-aggregation mechanism, 160

layers, 308 trailing edge, 422
boundaries, 309 training. 144
web, 308 set, 148

stomatogastric ganglion, 94 transient behavior, 373

stopping, 416 transition
strain matrix, 286 function, 431
stretched exponential relaxation, 292 values, 390
structural asymmetry, 427 translational, 284
superconductors, 252, 267, 277, 279 movements, 418
superfluid, 252, 278 symmetry, 246

principle of, 203 Tritonia, 93
swarm, 341 turbulence, 4, 289
switchboard factors, 94 turbulent diffusion, 300
switchboard system, 68 Turing, A. M., 166
switching functions, 420 two-filament system, 416
symmetry, 246-247, 307, 427 two-quadrant oscillation, 380

breaking, 278, 284 type I superconductors, 277
systems, 182-183 type II superconductors, 277

synaptic dynamics, 374
synaptic projections, 71 U
synthesis, 190, 203 Ulam, Stan, 198

T unbounded acceleration, 306
unconditioned stimulus (UCS), 109

Takeuchi, A., 27 unidirectional propagating waves, 415, 425,
tautology, 449 427
terminal piece, 425, 427 unified theory of biological organization, 67

adaptive resonance, 3, 30 universal constructor, 197
theory of embedding fields, 19
theory of superconductivity, 280 v
theorem

Goldstone's Theorem, 254 variability, 390
Jordan curve Theorem, 87 variation, 93
Mermin-Wagner Theorem, 256 variation-dependent optimization, 90
outstar learning Theorems, 23 Vaucanson's duck, 192-193

Thomas system, 167, 177 Vecchi, H.P., 35
threshold, 163-164, 415 velocity, 418
Tierra, 235 vertebrate, 101
time evolution, 317 visual system, 43
time-independent noise algorithms vibrational modes, 173
(TINA), 89 vigilance parameter, 31
time-invariant noise algorithms, 123 vision, 353
time scale, 296 visual, 357
tongue, 139 deprivation, 48
topological defects, 244, 256, 258 volume contraction, 84

importance of, 259 von der Malsburg, C., 27
topology, 243, 258, 267 von Neumann, John, 7, 197
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vortex lines, 277 wing patterns, 175

wing veins, 185
W wiring diagram, 320

wave, 425 partially local, 320
frequencies, 425 Wolpert, Lewis, 163
propagation, 425 word chunking, 342
splitting, 422 work hardening, 259
splitting mechanism, 425 wrapping number, 260

weak interaction. 280
wavelengths, 420, 4-15 y
web map, 306 Young's theory, 173
Weierstrass function. 297, 299
weight transport, 13
Weinberg-Salaam theory, 280 Z
Werbos, Paul, 12 Zaslavsky's web map, 305
Widrow, Bernard, 9 zebras, 175, 180
winding number, 258 Zipser, D., 27
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